
Citation: | ZHONG Qian, ZHOU Qing, SHU Jun, LIU Xinxin, JIANG Xudong, XU Xing. Material Characteristic and Origin Determination of Jade Unearthed from Xincun Cemetery Dated to Eastern Zhou Dynasty in Shayang, Hubei Province[J]. Journal of Gems & Gemmology, 2023, 25(6): 112-123. DOI: 10.15964/j.cnki.027jgg.2023.06.010 |
A batch of jade artifacts with obvious Chu style dated from mid to late Warring States period were unearthed in 2020 from Xincun cemetery in Shayang, Hubei Province. These artifacts include jade "Huang", jade rings, jade "Liu", jade pendants, jade tubes, jade beads, etc. By combining non-destructive and near-non-destructive testing methods including X-ray fluorescence spectroscopy (XRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), infrared spectroscopy (IR), and laser Raman spectroscopy (Raman), the chemical composition and vibration spectrum analysis of 36 unearthed jade pieces (sets) were conducted, and their origins were preliminarily explored. The results show that among the 36 pieces (sets) of jade unearthed from the Xincun cemetery, there are 4 pieces of nephrites, 19 pieces (sets) of mica jades, 3 pieces of agates, 2 pieces of bone material, and 8 pieces (sets) of glass. The rare earth element distribution curve, lower total rare earth content, Eu negative anomaly, and slight Ce negative anomaly of a blue white jade ring sample reflect that this jade may have originated from Xinjiang, Qinghai, or Gansu, and nephrite samples containing a large amount of star-shaped graphite secondary minerals may have originated from Xinjiang, Qinghai, or Liaoning. The proportion of mica jade in jade materials is about 55%, with various shapes and generally larger sizes. However, most of them have poor texture, rough craftsmanship, with high Si content, and slightly lower K content. There are residual dissolution like mica phenocrysts inside the jade material, suggesting that it should be a local raw material of metasomatic origin in Hubei. There are two types of dragonfly eye beads: lead barium glass and sodium calcium glass. The former is characterized by high Pb (8.12%-14.77%), Ba (14.49%-20.08%), and Cu (4.51%-7.56%), which are locally produced in Hubei; The latter is characterized by high Na (Na2O: 10.9%-11.9%), Ca (CaO: 5.84%-6.25%), and Sb (1.75%-2.28%), which were introduced from the West. The nephrite jade "Huang" unearthed from the Xincun cemetery comes from the tomb M1 of the lower officials, and the mica jade, agate, and glass ware all come from the tomb M2 of the madam. The use of these traditional non "real jade" materials reflects the tomb owner's view of using other stones instead of jade for burial due to financial constraints and status.
感谢中国科学院上海光学精密机械研究所李青会研究员、国家金银制品质量监督检验中心珠宝检测室招博文副主任对测试分析的支持!
[1] |
钟友萍, 丘志力, 李榴芬, 等. 利用稀土元素组成模式及其参数进行国内软玉产地来源辨识的探索[J]. 中国稀土学报, 2013, 31(6): 738-748.
Zhong Y P, Qiu Z L, Li L F, et al. REE composition of nephrite jades from major mines in China and their significance for indicating origin[J]. Journal of the Chinese Society of Rare Earths, 2013, 31(6): 738-748. (in Chinese)
|
[2] |
Shen A H, Luo Z, Yang M. Origin determination of dolomite-related white nephrite related white nephrite through iterative-binary linear discriminant analysis[J]. Gems & Gemology, 2015, 51(3): 300-311.
|
[3] |
先怡衡, 李延祥, 王炜林, 等. 便携式X荧光光谱结合主成分分析鉴别不同产地的绿松石[J]. 考古与文物, 2016(3): 112-119.
Xian Y H, Li Y X, Wang W L, et al. Principal component and portable X-ray fluorescence spectrometry analyses of the provenance of turquoise mines[J]. Archaeology and Cultural Relics, 2016(3): 112-119. (in Chinese)
|
[4] |
王荣, 王昌燧, 冯敏, 等. 利用微量元素探索绿松石的产地[J]. 中原文物, 2007(2): 101-106.
Wang R, Wang C S, Feng M, et al. Exploring the origin of turquoise using trace elements[J]. Cultural Relics of Central China, 2007(2): 101-106. (in Chinese)
|
[5] |
段体玉, 王时麒. 岫岩软玉(透闪石玉)的稳定同位素研究[J]. 岩石矿物学杂志, 2002, 21(A1): 115-119.
Duan T Y, Wang S Q. Study on stable isotopes of Xiuyan nephrite[J]. Acta Petrologica et Mineralogica, 2002, 21(A1): 115-119. (in Chinese)
|
[6] |
向芳, 王成善, 杨永富, 等. 金沙遗址玉器的材质来源探讨[J]. 江汉考古, 2008(3): 104-108.
Xiang F, Wang C S, Yang Y F, et al. A study of jadestone sources at the Jinsha site[J]. Jianghan Archaeology, 2008(3): 104-108. (in Chinese)
|
[7] |
刘继富, 杨明星, 苏越, 等. 湖北随州曾侯乙墓出土玉器材质分析与产源初探[J]. 光谱学与光谱分析, 2022, 42(1): 215-221.
Liu J F, Yang M X, Su Y, et al. Analysis of material and source of archaic jade from the tomb of marquis Yi of Zeng in Suizhou, Hubei Province[J]. Spectroscopy and Spectral Analysis, 2022, 42(1): 215-221. (in Chinese)
|
[8] |
支颖雪, 廖冠琳, 陈琼, 等. 贵州罗甸软玉的宝石矿物学特征[J]. 宝石和宝石学杂志(中英文), 2011, 13(4): 7-13.
Zhi Y X, Liao G L, Chen Q, et al. Gemmological and mineralogical characteristics of nephrite from Luodian, Guizhou Province[J]. Journal of Gems & Gemmology, 2011, 13(4): 7-13. (in Chinese)
|
[9] |
王濮, 潘兆橹, 翁玲宝. 系统矿物学·中册[M]. 北京: 地质出版社, 1984: 330, 437.
Wang P, Pan Z L, Weng L B. Systematic mineralogy: VolumeⅡ[M]. Beijing: Geological Publishing House, 1984: 330, 437. (in Chinese)
|
[10] |
林维峰, 袁枫, 罗奇, 等. 辽宁新宾云母玉的宝石矿物学特征[J]. 宝石和宝石学杂志(中英文), 2019, 21(3): 18-25.
Lin W F, Yuan F, Luo Q, et al. Gemmological and mineralogical characteristics of muscovite jade from Xinbin, Liaoning Province[J]. Journal of Gems & Gemmology, 2019, 21(3): 18-25. (in Chinese)
|
[11] |
杨春, 张平, 张琨. 湖北巴东绢云母玉的宝石学研究[J]. 资源环境与工程, 2009, 23(1): 74-78.
Yang C, Zhang P, Zhang K. Gemmological study on sericite jade in Badong area, Hubei[J]. Resources Environment & Engineering, 2009, 23(1): 74-78. (in Chinese)
|
[12] |
彭文世, 刘高魁. 矿物红外光谱图集[M]. 北京: 科学出版社, 1982: 357.
Peng W S, Liu G K. Mineral infrared spectrum atlas[M]. Beijing: Geological Publishing House, 1982: 357. (in Chinese)
|
[13] |
陈和生, 孙振亚, 邵景昌. 八种不同来源二氧化硅的红外光谱特征研究[J]. 硅酸盐通报, 2011, 30(4): 934-937.
Chen H S, Sun Z Y, Shao J C. Investigation on FT-IR spectroscopy for eight different sources of SiO2[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(4): 934-937. (in Chinese)
|
[14] |
刘继富. 熊家冢祔冢殉葬墓出土玉器的宝石学研究[D]. 武汉: 中国地质大学, 2022.
Liu J F. A Study on the jade carvings excavated from the Martyrs cemetery of Xiongjia tomb[D]. Wuhan: China University of Geosciences, 2022. (in Chinese)
|
[15] |
闵梦羽, 黄凤春, 罗泽敏. 湖北随州叶家山西周曾国墓地出土玉器的玉质研究[J]. 宝石和宝石学杂志(中英文), 2017, 19(1): 1-8.
Min M Y, Huang F C, Luo Z M. Jade composition of archaic jade artifact from Zeng State tomb of the Western Zhou Dynasty in Yejiashan, Suizhou, Hubei Province[J]. Journal of Gems & Gemmology, 2017, 19(1): 1-8. (in Chinese)
|
[16] |
Feng X Y, Zhang Y, Lu T J, et al. Characterization of Mg and Fe contents in nephrite using Raman spectroscopy[J]. Gems & Gemology, 2017, 53(2): 204-212.
|
[17] |
Mckeown D A, Bell M I, Etz E S. Vibrational analysis of the dioctahedral mica; 2M 1 muscovite[J]. American Mineralogist, 1999, 84(7-8): 1 041-1 048.
|
[18] |
曹淑慧, 张立飞, 孙樯, 等. 高压下多硅白云母的拉曼光谱学研究[J]. 岩石矿物学杂志, 2006, 25(1): 71-76.
Cao S H, Zhang L F, Sun Q, et al. A Raman spectroscopic study of phengite under high pressure[J]. Acta Petrologica et Mineralogica, 2006, 25(1): 71-76. (in Chinese)
|
[19] |
Mernagh T P. Use of the laser Raman microprobe for discrimination amongst feldspar minerals[J]. Journal of Raman Spectroscopy, 1991, 22(8): 453-457.
|
[20] |
Etchepare J. Vibrational normal modes of SiO2. I. α and β quartz[J]. Journal of Chemical Physics, 1974, 60(5): 1 873-1 876.
|
[21] |
Götze J, Nasdala L, Kleeberg R, et al. Occurrence and distribution of "moganite" in agate/chalcedony: A combined micro-Raman, Rietveld, and cathodoluminescence study[J]. Contributions to Mineralogy & Petrology, 1998, 133(1-2): 96-105.
|
[22] |
沈红霞. 铁氧化物/金核壳粒子的制备及表面增强拉曼光谱研究[D]. 苏州: 苏州大学, 2009.
Shen H X. Synthesis and surface enhanced Raman spectroscopic studies of iron oxide@Au Core-Shell Particles[D]. Suzhou: Suzhou University, 2009. (in Chinese)
|
[23] |
Zhao H X, Li Q H, Liu S, et al. In situ analysis of stratified glass eye beads from the tomb of Marquis Yi of the Zeng State in Hubei Province, China using XRF and micro-Raman spectrometry[J]. X-Ray Spectrometry, 2015, 43(6): 316-324.
|
[24] |
张治国, 马清林, 海因兹·贝克, 等. 中国古代人造硅酸铜钡颜料研究进展[J]. 中国文物科学研究, 2011(4): 45-49.
Zhang Z G, Ma Q L, Berke H, et al. Research progress on artificial copper barium silicate pigments in ancient China[J]. China Cultural Heritage Scientific Research, 2011(4): 45-49. (in Chinese)
|
[25] |
马清林, 张治国, 大卫·斯科特, 等. 中国战国时期八棱柱状费昂斯制品成分及结构研究[J]. 中国国家博物馆馆刊, 2012(12): 112-132.
Ma Q L, Zhang Z G, Scott D, et al. Microstructure and composition of octagonal faience stick from Warring States Period[J]. Journal of National Museum of China, 2012(12): 112-132. (in Chinese)
|
[26] |
李青会, 周虹志, 黄教珍, 等. 一批中国古代镶嵌玻璃珠化学成分的检测报告[J]. 江汉考古, 2005(4): 79-86, 93.
Li Q H, Zhou H Z, Huang J Z, et al. Chemical composition analytic results of ancient Chinese compound eyebeads[J]. Jianghan Archaeology, 2005(4): 79-86, 93. (in Chinese)
|
[27] |
李青会, 董俊卿, 苏伯民, 等. 湖北荆州出土战国玻璃珠的pXRF无损分析及相关问题研究[J]. 敦煌研究, 2013(1): 92-97.
Li Q H, Dong J Q, Su B M, et al. Non-destructive analysis of the Warring States glass beads unearthed from Jingzhou, Hubei by pXRF and discussion on relative issues[J]. Dunhuang Research, 2013(1): 92-97. (in Chinese)
|
[28] |
姚勤德. 江、浙地区的早期玻璃器和先秦时期的中西文化交流[J]. 东南文化, 1990(5): 186-190.
Yao Q D. Early glassware in the Jiangsu and Zhejiang regions and cultural exchange between China and the West during the pre-Qin period[J]. Southeast Culture, 1990(5): 186-190. (in Chinese)
|
[29] |
张福康, 程朱海, 张志刚. 中国古琉璃的研究[J]. 硅酸盐学报, 1983, 11(3): 67-76.
Zhang F K, Cheng Z H, Zhang Z G. Research on ancient Chinese glass[J]. Journal of the Chinese Ceramic Society, 1983, 11(3): 67-76. (in Chinese)
|
[1] | PENG Yufan, YANG Jiong, SHAO Jing, QIU Zhili, ZHANG Yuefeng, YE Xu, QU Pan, GAO Zhenli, LUO Zhengchen. fsLA-ICP-MS Analysis of Siliceous Stone Arrowheads at Shimao Site[J]. Journal of Gems & Gemmology, 2024, 26(S1): 119-121. |
[2] | LIAO Xiuhong, HU Zhaochu, LIU Dan, ZENG Xianli, FENG Lanping, ZHANG Wen. Single-Second Pulse LA-MC-ICP-MS Analysis of Sr Isotope: Application to the Quasi "Non-Destructive" Discrimination between Seawater Cultured Pearl and Freshwater Cultured Pearl[J]. Journal of Gems & Gemmology, 2024, 26(S1): 89-90. |
[3] | ZHENG Xinyu, GU Xianzi, HUANG Xiang, QIU Zhili, ZHANG Yuefeng, HUANG Xiangtong. Materials Origin Traceability of Serpentine Jade Artifacts Unearthed from Fuquanshan Site[J]. Journal of Gems & Gemmology, 2024, 26(3): 1-9. DOI: 10.15964/j.cnki.027jgg.2024.03.001 |
[4] | LIU Xinxin, ZHONG Qian, WANG Yanlin, BAO Deqing, SHU Jun. Chemical Composition and Spectral Characteristic of Jadeite Jade Dated to Qing Dynasty[J]. Journal of Gems & Gemmology, 2023, 25(6): 124-133. DOI: 10.15964/j.cnki.027jgg.2023.06.011 |
[5] | QU Zhi, SHI Yujing, SHEN Hongtao, LI Peng, ZHANG Qian. Properties and Identification Characteristics of Counterfeit Fibrous Mineral Specimens Made with REE Glass Fiber[J]. Journal of Gems & Gemmology, 2023, 25(5): 127-134. DOI: 10.15964/j.cnki.027jgg.2023.05.014 |
[6] | YU Haochi, SHU Jun, LU Zhuo, LIU Xinxin, ZHOU Qishen. Chemical Composition and Spectral Characteristic of Blue Tourmaline from Yunnan Province, China[J]. Journal of Gems & Gemmology, 2023, 25(5): 54-64. DOI: 10.15964/j.cnki.027jgg.2023.05.006 |
[7] | ZHAO Xuejiao, LI Liping, CHEN Zhaomin, LI Siqi. Spectrum and Chemical Composition Characteristics between White "Freshwater Akoya Pearls" and Akoya Pearls[J]. Journal of Gems & Gemmology, 2023, 25(2): 32-41. DOI: 10.15964/j.cnki.027jgg.2023.02.005 |
[8] | YU Xiaoyan, LONG Zhengyu, ZHANG Yi, LIU Fei, WANG Guangya, GUO Hongshu, ZHENG Yuyu. In-Situ Micro-Analysis and Application in Gemmology Based on LA-(MC)-ICP-MS[J]. Journal of Gems & Gemmology, 2022, 24(5): 134-145. DOI: 10.15964/j.cnki.027jgg.2022.05.013 |
[9] | MA Xiao, CHENG Youfa, LI Jianjun, WANG Ping, ZHANG En. Identification Method for Producing Area of Blue Sapphire from Changle, Shandong Province[J]. Journal of Gems & Gemmology, 2019, 21(S1): 15-19. DOI: 10.15964/j.cnki.027jgg.2019.S1.006 |
[10] | PEI Jing-cheng, XIE Hao, SUN Chun-lin. Study on Gemmological Characteristics of Red Feldspar[J]. Journal of Gems & Gemmology, 2009, 11(3): 11-14. |