Volume 25 Issue 3
May  2023
Turn off MathJax
Article Contents
ZHANG Min, WANG Zijun, ZHENG Qiran, CAO Suqiao, WANG Feng. Gemmological and Mineralogical Characteristics of Lapis Lazuli[J]. Journal of Gems & Gemmology , 2023, 25(3): 54-59. doi: 10.15964/j.cnki.027jgg.2023.03.007
Citation: ZHANG Min, WANG Zijun, ZHENG Qiran, CAO Suqiao, WANG Feng. Gemmological and Mineralogical Characteristics of Lapis Lazuli[J]. Journal of Gems & Gemmology , 2023, 25(3): 54-59. doi: 10.15964/j.cnki.027jgg.2023.03.007

Gemmological and Mineralogical Characteristics of Lapis Lazuli

doi: 10.15964/j.cnki.027jgg.2023.03.007
  • Received Date: 2023-03-08
  • Publish Date: 2023-05-31
  • Lapis lazuli is a kind of blue mineral with a long history, which occupies a place in the history of human civilization. Study its gemmological and mineralogical characteristics not only helps the identification of lapis lazuli and its imitation products, but also provids technical support for its quality classification. In this paper, 3 lapis lazuli samples with different quality were selected and tested by gem microscope, infrared spectrometer, laser Raman spectrometer, and UV-Vis spectrometer, in order to analyze their mineral components and spectral characteristics comprehensively.The results showed that the mineral compoments of the samples are different obviously: the main mineral components of sample No.1 are lapis lazuli, calcite, pyrite, diopside, and a small amount of sodalite and sphene which indicates average quality. Sample No.2 with relatively poor quality is mainly composed of lapis lazuli, calcite, pyrite, diopside, with a small amount of feldspar. Only lapis lazuli, diopside and a small amount of pyrite are found in sample No.3, which is of high quality. The infrared spectra of the samples show few differences, and are mainly caused by the frame silicate structure of lapis lazuli and the additional anions of its structural channels, which locate around 1 103, 1 014, 969, 921, 624, 549, 517, 460 cm-1 and 412 cm-1. The characteristic Raman shifts of lapis lazuli samples are around 257, 544 cm-1 and 1 092 cm-1 and the strongest peak appears at 544 cm-1 which is caused by the symmetric stretching vibration of S3-. UV-Vis spectra of the lapis lazuli samples showed the broad band centered at 600 nm (associated with the free radical ion S3-) and the weak band around 400 nm (associated with [SO4]2- and S2-), which give lapis lazuli a blue or bluish purple appearance.
  • loading
  • [1]
    余晓艳. 有色宝石学教程[M]. 北京: 地质出版社, 2009: 281.

    Yu X Y. Colored gemmology[M]. Beijing: Geological Publishing House, 2009: 281. (in Chinese)
    [2]
    赖舒琪, 杨炯, 丘志力. 利用青金石追溯古代跨文化交流[C]//2021国际珠宝首饰学术交流会文集. 北京: 中国宝石, 2021: 438-442.

    Lai S Q, Yang J, Qiu Z L. Tracing ancient cross-cultural communication via lapis lazuli[C]// Beijing: China Gems 2021 International Jewelry Symposium Collection. Beijing: China Gems, 2021: 438-442. (in Chinese)
    [3]
    罗文焱. 色相如天青金石——论青金石文化与青金石艺术[D]. 北京: 中国地质大学, 2014.

    Luo W Y. Lapis lazuli with celestial look and texturec—On it's culture and art[D]. Beijing: China University of Geosciences, 2014. (in Chinese)
    [4]
    刘昌玉, 卞晓宇. 丝绸之路开辟前亚洲西端青金石商路探析[J]. 浙江师范大学学报: 社会科学版, 2022, 47(1): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDB202201007.htm

    Liu C Y, Bian X Y. On lapis lazuli trade route, a route in West Asia before Silk Road[J]. Journal of Zhejiang Normal University(Social Sciences), 2022, 47(1): 52-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDB202201007.htm
    [5]
    刘衔宇, 李君竹. 唐代龟兹文化的发展与融合——以克孜尔壁画中矿物颜料为例[J]. 宝石和宝石学杂志(中英文), 2022, 24(5): 227-233.

    Liu X Y, Li J Z. Development and integration of Qiuci Culture in Tang Dynasty: Take mineral pigment in Kizil wall painting as an example[J]. Journal of Gems & Gemmology, 2022, 24(5): 227-233. (in Chinese)
    [6]
    张蓓莉. 系统宝石学[M]. 2版. 北京: 地质出版社, 2006: 302.

    Zhang B L. Systematic gemology[M]. 2nd edition. Beijing: Geological Publishing House, 2006: 302. (in Chinese)
    [7]
    童榆岚. 青金石玉品质影响因素研究[D]. 石家庄: 河北地质大学, 2018.

    Tong Y L. Study on the influencing factors of lapis quality[D]. Shijiazhuang: Hebei GEO University, 2018. (in Chinese)
    [8]
    彭明生, 张如柏, 郑楚生, 等. 青金石的谱学研究及其意义[J]. 中南矿冶学院学报. 1983(2): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD198302014.htm

    Peng M S, Zhang R B, Zheng C S, et al. A study on spectroscopy of lazurite and its significance[J]. Journal of Central-South Institute of Mining and Metallurgy, 1983(2): 90-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD198302014.htm
    [9]
    Bellatreccia F, Ventura G D, Piccinini M, et al. H2O and CO2 in minerals of the haüynesodalite group: An FTIR spectroscopy study[J]. Mineralogical Magazine, 2009, 73(3): 399-413. doi: 10.1180/minmag.2009.073.3.399
    [10]
    Bacci M, Cucci C, Federico E D, et al. An integrated spectroscopic approach for the identification of what distinguishes Afghan lapis lazuli from others[J]. Vibrational Spectroscopy, 2009, 49(1): 80-83. doi: 10.1016/j.vibspec.2008.05.002
    [11]
    Sapozhnikov A N, Tauson V L, Lipko S V, et al. On the crystal chemistry of sulfur-rich lazurite, ideally Na7Ca(Al6Si6O24)(SO4)(S3)-·nH(2)O[J]. American Mineralogist, 2021, 106(2): 226-234. doi: 10.2138/am-2020-7317
    [12]
    陈稳. 青金石的宝石学特征及其蓝颜色的色度学表征[D]. 北京: 中国地质大学, 2017.

    Chen W. Gemological characteristics of lazuli lapiz and colorimetry charaterization of its' blue color[D]. Beijing: China University of Geosciences, 2017. (in Chinese)
    [13]
    王濮, 潘兆橹, 翁玲宝. 系统矿物学(中册)[M]. 北京: 地质出版社, 1984: 91-93.

    Wang P, Pan Z L, Weng L B. Systematic mineralogy[M]. Beijing: Geological Publishing House, 1984: 91-93. (in Chinese)
    [14]
    闻辂. 矿物红外光谱学[M]. 重庆: 重庆大学出版社, 1989.

    Wen L. The infrared spectroscopy of minerals[M]. Chongqing: Chongqing University Press, 1989. (in Chinese)
    [15]
    伏修锋, 干福熹, 马波, 等. 青金石产地探源[J]. 自然科学史研究, 2006(3): 246-254. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRKY200603006.htm

    Fu X F, Gan F X, Ma B, et al. Concerning the provenance of lapis lazuli[J]. Studies in the History of Natural Sciences, 2006(3): 246-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRKY200603006.htm
    [16]
    Bicchieri M. Nardone M, Russo P A, et al. Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 915-922. doi: 10.1016/S0584-8547(01)00228-2
    [17]
    Schmidt C M, Walton M S, Trentelman K. Characterization of lapis lazuli pigments using a multitechnique analytical approach: Implications for identification and geological provenancing[J]. Analytical Chemistry, 2009, 81(20), 8 513-8 518. doi: 10.1021/ac901436g
    [18]
    Vogt H, Chattopadhyay T, Stolz H J. Complete first-order Raman spectra of the pyrite structure compounds FeS2, MnS2 and SiP2[J]. Journal of Physics and Chemistry of Solids, 1983, 44(9): 869-873. doi: 10.1016/0022-3697(83)90124-5
    [19]
    汪立今, 柴凤梅, 王德强. 新疆某地宝石级透辉石拉曼光谱及基本特征初探[J]. 新疆大学学报(自然科学版), 2002(3): 341-343. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDZ200203021.htm

    Wang L J, Chai F M, Wang D Q. The study of Raman spetrum and basic characteristic on gem-grade diopside in Xingjiang[J]. Journal of Xinjiang University(Natural Science Edition in Chinese and English), 2002(3): 341-343. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJDZ200203021.htm
    [20]
    姚雪, 邱明君, 祖恩东. 紫色方钠石的拉曼光谱研究[J]. 超硬材料工程, 2009, 21(1): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBKJ200901023.htm

    Yao X, Qiu M J, Zu E D. Research on Raman spectra of purple sodalite[J]. Superhard Material Engineering, 2009, 21(1): 59-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBKJ200901023.htm
    [21]
    任芊芊, 袁一钗. 巴基斯坦宝石级榍石谱学研究[J]. 光谱学与光谱分析, 2021, 41(7): 2 263-2 268. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202107051.htm

    Ren Q Q, Yuan Y C. Study on spectroscopy of sphene from Pakistan[J]. Spectroscopy and Spectra Analysis, 2021, 41(7): 2 263-2 268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202107051.htm
    [22]
    Pantiy c ' J, Urbanovich V, Poharc-Logar V, et al. Synthesis and characterization of high-pressure and high-temperature sphene (CaTiSiO5)[J]. Physics and Chemistry of Minerals, 2014, 41(10): 775-782.
    [23]
    谢俊. 铝硅酸盐精细结构及长石的拉曼光谱研究[D]. 北京: 中国地质大学, 2008.

    Xie J. A Raman spectroscopy study of hyperfine structure of aluminosilicate and feldspar[D]. Beijing: China University of Geosciences, 2008. (in Chinese)
    [24]
    罗跃平, 耿云瑛, 王春生. 染色青金石的鉴定[C]// 2013中国珠宝首饰学术交流会. 北京: 中国宝石, 2013: 169-171.

    Luo Y P, Geng Y Y, Wang C S. Identification of dyed lapis[C]// 2013 International Jewelry Symposium Collection. Beijing: China Gems, 2013: 169-171. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return