Citation: | WANG Yani, ZHANG Yuyang, YIN Zuowei. Trace Element and Genesis of Colour Band of Sapphire from Changle, Shandong Province, China[J]. Journal of Gems & Gemmology, 2024, 26(4): 12-21. DOI: 10.15964/j.cnki.027jgg.2024.04.002 |
The development of colour band is one of the main features of the sapphire in basalt in Changle, Shandong Province. The trace elements not only affect the colour of the gems, but also play an important role in understanding the genesis of sapphire and the mother source magma. This study takes the sapphires from Changle, Shandong Province as the research objects, and their spectrum characteristics and chemical compositions were tested by UV-visible absorption spectrometer, Fourier transformed infrared spectrometer and laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS). The results show that the sapphire samples from Changle have the characteristics of high Fe and Ga, low Mg and Cr, which is in line with the characteristics of sapphire in magma; the Fe content changes regularly with the shades of colour bands, indicating the intability of the sapphire crystallization process. The 3 310 cm-1 absorption peak related to -OH can be seen in the infrared absorption spectrum. The -OH content and the shade of the colour band are positively correlated. The darker band has the highest-OH content, and the -OH content of light band is relatively low. In the ultraviolet spectrum, the yellow core part has obvious relationship with the 450 nm absorption peak related to Fe3+ -Fe3+, indicating that the yellow core part is produced under partial oxidizing conditions. The blue colour zone has obvious relationship with the 450 nm absorption peak related to Fe2+-Ti4+, indicating that the blue colour zone is produced under partial reducting conditions.
[1] |
张蓓莉. 系统宝石学[M]. 北京: 地质出版社, 2006: 116-127.
Zhang B L. Systematic gemmology[M]. Beijing: Geology Press, 2006: 279. (in Chinese)
|
[2] |
Olganova I N, Katyba G M, Shikunova I A, et al. Sapphire-based medical instruments for diagnosis, surgery and therapy[J]. SPIE, 2020: 113-118.
|
[3] |
Dobrovinskaya E R, Lytvynov L A, Pishchik V. Sapphire[J]. Springer Science, Business Media, 2009: 31-42.
|
[4] |
杨培志, 刘黎明, 张小文, 等. 长波红外光学材料的研究进展[J]. 无机材料学报, 2008, 23(4): 641-646.
Yang P Z, Liu L M, Zhang X W, et al. Research progress of long-wavelength infrared optical materials[J]. Journal of Inorganic Materials, 2008, 23(4): 641-646. (in Chinese)
|
[5] |
Akasaki I. Key inventions in the history of nitride-based blue led and ld[J]. Journal of Crystal Growth, 2007, 300(1): 2-10.
|
[6] |
Rinaudo C, Orione P, Zarka A. Chemical and crystallographic investigations on the cracking of blue corundum, Al2O3, produced by the Verneuil technique[J]. Journal of applied crystallography, 2000, 33(3): 947-952.
|
[7] |
Giuliani G, Groat L A. Geology of corundum and emerald gem deposits: A review[J]. Gems &Gemmology, 2019, 55(4): 464-489.
|
[8] |
Sutherland F L, Schwarz D, Jobbins E A, et al. Distinctive gem corundum suites from discrete basalt fields: A comparative study of Barrington, Australia, and West Pailin, Cambodia, gemfields[J]. Gemmology, 1998, 26(2): 65-85.
|
[9] |
Giuliani G, Ohnenstetter D, Fallick A E, et al. The geology and genesis of gem corundum deposits[J]. Geology of Gem Geposits, 2014(4): 29-112.
|
[10] |
Giuliani G, Fallick A, Rakotondrazafy M, et al. Oxygen isotope systematics of gem corundum deposits in Madagascar: Relevance for their geological origin[J]. Mineralium Deposita, 2007(42): 251-270.
|
[11] |
Graham I, Sutherland L, Zaw K, et al. Advances in our understanding of the gem corundum deposits of the West Pacific continental margins intraplate basaltic fields[J]. Ore Geology Reviews, 2008, 34(1-2): 200-215.
|
[12] |
Vysotskiy S V, Shcheka S A, Nechaev V P, et al. First finding of sapphire from Cenozoic alkali-basaltic volcanoes in the Primor'e Region[J]. Doklady Earth Sciences, 2002, 387A (9), 1 100-1 103.
|
[13] |
Buravleva S Y, Smirnov S Z, Pakhomova V A, et al. Sapphires from the Sutara placer in the Russian Far East[J]. Gems & Gemmology, 2016, 52(3): 252-264.
|
[14] |
董振信, 杨良锋, 王月文. 山东蓝宝石原生矿床成因探讨[J]. 地球学报, 1999, 20(2): 65-71.
Dong Z X, Yang L F, Wang Y W. Study on the origin of the sapphire deposit in the Changle area, Shandong[J]. Acta Geoscientica Sinica, 1999, 20(2): 65-71. (in Chinese)
|
[15] |
Guo J, O'reilly S Y, Griffin W L. Zircon inclusions in corundum megacrysts: I. Trace element geochemistry and clues to the origin of corundum megacrysts in alkali basalts[J]. Geochimica et Cosmochimica Acta, 1996, 60(13): 2 347-2 363.
|
[16] |
Guo J, O'reilly S Y, Griffin W L. Corundum from basaltic terrains a mineral inclusion approach to the enigma[J]. Contrib Mineral Petrol, 1996, 122(4): 368-386.
|
[17] |
赵令权, 孔凡梅, 李旭平, 等. 新生代碱性玄武岩及其蓝宝石成矿模式探讨——以鲁西昌乐地区为例[J]. 山东科技大学学报(自然科学版), 2015, 34 (4): 7-27.
Zhao L Q, Kong F M, Li X P, et al. Metallogenic machanism of corundum megacrysts in Cenozoic alkaline basalt—A case investigation of Changle, Western Shandong[J]. Journal of Shandong University of Science and Technology(Natural Science), 2015, 34 (4): 7-27. (in Chinese)
|
[18] |
Dong Z, Yang L, Wang W. Study on the origin of the sapphire deposit in the Changle area, Shandong[J]. Acta Geosci. Sin., 1999, 20(2): 177-183.
|
[19] |
Aspen P, Upton B G J, Dicken A P. Anorthoclase, sanidine and associated megacrysts in Scottish alkali basalts: High-pressure syenitic debris from upper mantle sources[J]. European Journal of Mineralogy, 1990, 2(4), 503-17.
|
[20] |
Peucat J J, Ruffault P, Fritsch E, et al. Ga/Mg ratio as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires[J]. Lithosphere, 2007(98): 261-274.
|
[21] |
余晓艳, 姚小梅, 汪云峰, 等. 郯庐断裂中段第三纪玄武岩特征及与刚玉的形成关系[J]. 地质与勘探, 2000, 36(3): 28-31.
Yu X Y, Yao X M, Wang Y F, et al. Characteristics of tertiary period basalt of the middle tanlu fault belt and the relationship of corundum[J]. Geology and Exploration, 2000, 36(3): 28-31. (in Chinese)
|
[22] |
张战军, 赫英, 岳可芬, 等. 山东昌乐、海南岛蓬莱蓝宝石环带特征及比较[J]. 矿床地质, 2002, 21 (S1): 938-940.
Zhang Z N, He Y, Yue K F, et al. Character of girdle band and its comparision of sapphire from Changle, Shandong Province and Penglai, Hainan Province[J]. Mineral Deposits, 2002, 21 (S1): 938-940. (in Chinese)
|
[23] |
Kan-Nyunt H P, Karampelas S, Link K, et al. Blue sapphires from the Baw Mar Mine in Mogok[J]. Gems & Gemmology, 2013, 49(4): 223-232.
|
[24] |
Uher P, Giuliani G, Sádor S, et al. Sapphires related to alkali basalts from the Cerov Highlands, Western Carpathians (southern Slovakia): Composition and origin[J]. Geologica Carpathica, 2012, 63(1): 71-82.
|
[25] |
牛晓薇. 山东昌乐蓝宝石的LA-ICP-MS分析及环带研究[D]. 北京: 中国地质大学, 2014.
Niu X W. LA-ICP-MS analysis and zoning research of sapphire from Changle, Shandong[D]. Beijing: China University of Geosciences, 2014. (in Chinese)
|
[26] |
Liu Y, Lu R. Sapphire beneath the rich black soil of muling, northeastern China[J]. Gems & Gemmology, 2022, 58(3): 290-317.
|
[27] |
Wang G Y, Yu X Y, Liu F. Genesis of color zonation and chemical composition of Penglai sapphire in Hainan Province, China[J]. Minerals, 2022, 12(7): 832.
|
[28] |
Hughes E B, Perkins R. Madagascar sapphire: Low-temperature heat treatment experiments[J]. Gems & Gemmology, 2019, 55(2): 184-197.
|
[29] |
Moon A R, Phillips M R. Defect clustering and color in Fe, Ti-alpha -Al2O3[J]. Journal of the American Ceramic Society, 1994, 77(2): 356.
|
[30] |
陈涛, 杨明星. Be扩散处理、热处理和天然双色昌乐蓝宝石的宝石学特征与鉴别[J]. 光谱学与光谱分析, 2012, 32(3): 651-654.
Chen T, Yang M X. Gemmology characterization and identification of beryllium diffused heated and untreated bicolor sapphires from Changle City, China[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 651-654. (in Chinese)
|
[31] |
Wheeler O H. Near infrared spectra of organic compounds[J]. Chemical Reviews, 1959, 59(4): 629-666.
|
[32] |
闻辂. 矿物红外光谱学[M]. 重庆: 重庆大学出版社, 1989.
Wen L. The infrared spectra of minerals[M]. Chongqing: Chongqing University Press, 1989. (in Chinese)
|
[33] |
Emmett J L, Scarratt K, Mcclure S F, et al. Beryllium diffusion of ruby and sapphire[J]. Gems & Gemmology, 2003(2)39: 84-135.
|
[34] |
Ubinsky E V, Stone-Sundberg J, Emmett J L. A quantitative description of the causes of color in corundum[J]. Gems & Gemmology, 2020, 56(1): 1-27.
|
[35] |
Fritsch E. Blue color in sapphire caused by Fe2+/Fe3+ intervalence charge transfer[J]. Gems & Gemmology, 1993, 29(3): 151.
|
[36] |
Hughes R W, Manorotkul W, Hughes E B. Ruby & sapphire: A gemologist's guide[M]. Bangkok, Thailand: RWH Publishing, 2017.
|
[37] |
Emmett J L, Douthit T R. Heat treating the sapphires of Rock Creek, Montana[J]. Gems & Gemmology, 1993, 29(4): 250-272.
|