CAI Shanwu, CAO Wenzheng, ZHAO Wei, MAI Zhiqiang. Chromaticity Contrast Analysis of Several Common Blue Gemstones[J]. Journal of Gems & Gemmology, 2023, 25(5): 65-72. DOI: 10.15964/j.cnki.027jgg.2023.05.007
Citation: CAI Shanwu, CAO Wenzheng, ZHAO Wei, MAI Zhiqiang. Chromaticity Contrast Analysis of Several Common Blue Gemstones[J]. Journal of Gems & Gemmology, 2023, 25(5): 65-72. DOI: 10.15964/j.cnki.027jgg.2023.05.007

Chromaticity Contrast Analysis of Several Common Blue Gemstones

More Information
  • Received Date: June 16, 2023
  • Sapphire, apatite and cordierite are common blue gemstones that in some way similar, but there are still many differences in their colours. Subjective colour evaluation cannot accurately quantify the specific colour differences of the three gemstones. This study used the principle of chromaticity to measure the correlated chromaticity data of sapphire, apatite and cordierite. Quality analysis and evaluation were performed under the CIE1931 chromaticity system and CIE1976 La*b* colour space system. The colours of the three gemstones can be divided into four hues: blue, blue-violet, blue-cyan and blue-green. The results show that sapphire shows the bluest hue, followed by apatite. Sapphire shows more green hue, and apatite shows more yellow hue. It is concluded that the blue-green sapphires have the worst chroma, pure blue and blue-violet sapphires have the best colour quality; blue-cyan and blue-green apatites have the best colour quality. The lightness of cordierite has a certain negative correlation with the chroma: blue and blue-violet hues of cordierite have excellent chroma but poor lightness, while blue-cyan and blue-green hues of cordierite have good lightness but poor chroma. From this, the correspondence between the colour quality and chromaticity parameters of the three blue gemstones can be deduced, which provides a scientific theoretical basis for colour quality grading.
  • 蓝色蓝宝石、磷灰石和堇青石分别是珠宝市场中常见的高中低档蓝色系列宝石,其颜色评价是宝石品质与价值评估的重要因素之一。色度学是一门研究彩色计量的科学,主要研究人的颜色视觉规律、颜色测量的理论与技术,为描述颜色提供科学依据和统一标准[1],相比传统主观性的宝石颜色质量评价,色度学分析可以更客观、定量地描述颜色的具体差异与级别。

    现今,国内外关于宝石的色度学研究主要集中在红色宝石、绿色宝石以及蓝色蓝宝石上。例如,阮耀华等[2-3]通过色调、明度和彩度差异将红色尖晶石划分成不同等级;田莉等[4]构建了在均匀色空间系统下红宝石的八个颜色等级;董琳玲等[5-6]对红宝石、尖晶石、石榴石、碧玺进行了色度学对比分析,得出近似色调角样品的明度L和彩度C*大小顺序;徐萌等[7]通过色度学分析认为,高明度和高彩度的南红玛瑙具有较强烈的华美感;高寒等[8]推论出阿富汗祖母绿的色调角与饱和度呈负相关关系;洪怡颖等[9]推断出天河石的明度与彩度之间存在显著负相关关系,而彩度与色调角有低度正相关关系;乜东晶等[10]利用主波长划分绿色翡翠的主色调与颜色纯度相关关系;宗翔等[11]通过GemDialogue色卡将绿色翡翠分为正绿、阳绿、中绿、深绿、暗绿、淡绿、灰绿7个颜色级别;李国一等[12]用统计学软件SPSS将蓝宝石分为红、橙、黄、绿、蓝、紫6大颜色系列;S.De Meo等[13]利用孟塞尔色彩系统和分光光度计设计了一种有效的宝石颜色评估手段;K.Schmetzer等[14]利用比色数据定量准确描述了俄罗斯乌拉尔产地亚历山大变石的颜色变化;V.F.Sotnikova等[15]在CIE1931标准色度系统下对Naryn-Gol矿床的蓝宝石进行简单颜色质量分析;R.Cheng等[16]通过色度学分析将热处理紫水晶颜色划分为强烈绚丽、浓厚绚丽、暗色绚丽、绚丽、淡绚丽5个等级。

    目前对蓝色系列宝石的色度学研究较少,有的也只集中于蓝宝石的初步颜色分析,缺少对常见蓝色宝石的色度学的整体研究。市场上蓝色蓝宝石、磷灰石、堇青石作为蓝色相似宝石,其颜色仍有许多差异,故本文运用色度学方法分别对其颜色进行分析对比。利用色度学直观、可量化的参数,客观直接地表达这三种蓝色宝石的颜色具体差异,并探究它们主观颜色品质优劣与不同色度参数之间的对应关系,可作为辅助鉴别蓝宝石、磷灰石、堇青石的色度学方法。

    本文选取了具有不同颜色色调、由深到浅的蓝色系列宝石样品共计38颗,由于部分宝石样品为原石,可能出现颜色不均匀的情况,所以对样品多次测量取其平均值,以此来降低可能因颜色不均匀而带来的误差。蓝色蓝宝石样品共14颗,编号为S1~S14,其中原石样品8颗;堇青石样品共12颗,编号C1~C12,其中原石8颗;磷灰石样品12颗,编号为A1~A12,其中原石10颗(图 1-图 3)。

    Figure  1.  Sapphire samples (No. S1-S14)
    Figure  2.  Apatite samples (No. A1-A12)
    Figure  3.  Cordierite samples (No. C1-C12)

    实验仪器为美国Ocean Optics公司的USB2000 +光纤光谱仪,利用积分球收集样品表面的反射信号,测量的波长范围选在380~1 000 nm,实验光源为CIE标准照明体中的D65光源,波长间隔为10 nm,采集积分时间为2 500 μs。

    通过实验测得三种宝石样品的相关色度学参数(表 1): 主波长、LCa*b*,且通过CIE1976 La*b*hab*=arctan(b*/a*),计算样品的色调角hab*

    Table  1.  Chromaticity parameters of sapphire, apatite and cordierite
    样品号 主波长 L a* b* C* hab*
    S1 476.914 35.627 0.228 -13.857 13.859 270.943
    S2 476.644 51.184 0.400 -12.800 12.806 271.790
    S3 476.608 41.116 0.444 -13.042 13.049 271.948
    S4 475.952 47.622 0.927 -13.131 13.163 274.036
    S5 475.641 48.494 1.345 -15.106 15.166 275.086
    S6 475.331 36.691 1.217 -11.557 11.620 276.009
    S7 566.098 40.295 -18.946 48.415 51.990 291.372
    S8 566.184 28.551 -9.011 17.798 19.949 296.852
    S9 563.465 35.519 -19.746 37.115 42.040 298.014
    S10 558.339 49.708 -12.314 13.135 18.004 313.153
    S11 489.824 36.387 -3.937 -1.972 4.403 26.608
    S12 488.231 34.682 -5.009 -3.680 6.216 36.304
    S13 483.951 33.229 -2.553 -4.335 5.031 59.508
    S14 482.884 30.515 -1.519 -3.338 3.667 65.534
    A1 575.796 35.799 -0.635 37.080 37.086 270.980
    A2 575.817 33.420 -0.512 29.184 29.188 271.006
    A3 573.808 45.119 -3.582 30.112 30.324 276.784
    A4 565.315 33.910 -9.165 15.825 18.287 300.077
    样品号 主波长 L a* b* C* h*ab(°)
    A5 491.787 35.389 -8.667 -2.583 9.044 16.597
    A6 489.565 37.049 -9.852 -4.906 11.006 26.473
    A7 487.114 35.422 -7.755 -6.297 9.989 39.076
    A8 485.143 38.346 -11.761 -13.704 18.058 49.362
    A9 484.831 39.308 -10.681 -13.462 17.184 51.572
    A10 484.290 42.085 -8.944 -12.826 15.636 55.110
    A11 483.462 35.283 -8.186 -13.658 15.923 59.063
    A12 482.775 28.549 -4.688 -9.599 10.683 63.968
    C1 568.392 29.453 -27.889 133.570 136.450 281.794
    C2 567.421 34.942 -22.308 94.525 97.122 283.279
    C3 568.478 23.961 -23.889 -23.889 99.061 283.955
    C4 567.713 29.260 -17.759 66.820 69.140 284.884
    C5 453.272 20.859 -42.935 147.054 153.193 286.276
    C6 454.584 19.364 -51.220 157.112 165.250 288.057
    C7 451.634 19.771 -75.314 203.223 216.730 290.335
    C8 451.991 17.322 -90.901 217.663 235.882 292.666
    C9 491.925 29.340 -3.784 -4.430 5.826 49.501
    C10 493.911 33.922 -2.060 -0.341 2.088 9.404
    C11 491.780 39.673 -2.058 -0.648 2.158 17.479
    C12 486.807 41.426 -1.558 -1.469 2.141 43.316
     | Show Table
    DownLoad: CSV

    CIE 1931色品图可以描述任意一个颜色,将各个光谱色的坐标点连在一起会形成一条马蹄形曲线,马蹄形线上的各点代表380 nm(紫色)到780 nm(红色)之间的所有单色光[17]。将38颗样品的主波长在色品图上投点(图 4),通过作图法获得该投点的主波长或补色波长(色品图中用直线表示),其颜色即是投点的主色调[3]

    Figure  4.  CIE 1931 chromaticity diagram of three blue gemstone samples

    表 1图 4可以看出,三种样品的主波长分布550~575 nm以及450~490 nm两个区域。其中450~490 nm是显示蓝色、蓝紫色的区域,此时蓝色蓝宝石的主波长为475~485 nm,显示蓝色-蓝青色色调;磷灰石的主波长为480~490 nm,显示蓝青色-蓝绿色色调;堇青石的主波长为450 nm附近,显示蓝紫色色调,而在485~495 nm范围内显示蓝青色-蓝绿色色调。550~575 nm是显示黄绿色的区域,根据颜色互补原理,可知三种宝石主波长在550~575 nm范围时显示蓝色的补色波长,蓝宝石和堇青石有蓝紫色调的补色,磷灰石有蓝色调的补色。

    CIE 1976 La*b*颜色空间作为目前最广泛运用的颜色分析系统,是由国际照明学会(CIE)在1976年推荐使用的均匀色空间。该空间为三维直角坐标系统,三个互相垂直的坐标轴分别是明度L以及色度参数a*b*。其中明度L表示颜色的明暗程度,是彩色的三要素之一[18],明度L越高所显示的颜色越明亮。色度参数a*b*表示不同的色调方向,+a*表示偏红色调方向,-a*表示偏绿色调,+b*表示偏黄色色调,-b*表示偏蓝色调。此外,CIE1976 La*b*颜色空间系统还有彩度C和色调角hab*两个色度参数,彩度也是颜色的三要素,即色彩的饱和度,也可称为纯度或鲜艳度[19],色调角hab*即表示颜色在坐标系统中偏向色度参数a*(x轴)和b*(y轴)的具体角度方向。

    根据表 1将蓝宝石、磷灰石、堇青石样品的La*b*在三维坐标上进行投点(图 5),并在xyxzyz平面进行投影(图 6)。蓝宝石样品的明度值L在30~55之间,普遍显示上佳的明度;磷灰石的明度值L稍弱,在25~45之间,仍显示较亮的明度;而堇青石的明度跨度较大,既有L值在35~45之间,显示较亮明度的样品,也存在大量L值小于20,明度很差的宝石样品。同时堇青石的色调也分布广泛,对比蓝宝石和磷灰石整体上要么带有红蓝色调,要么能显示一些黄绿色调,这种明度和色调的较离散分布应该与堇青石样品具有强多色性的特点有关。蓝色蓝宝石则最显示蓝色调,磷灰石也显示了很强的蓝色调。同时部分蓝宝石相较磷灰石更显示一些绿色调,部分磷灰石则相比蓝宝石更显示了一些黄色调。

    Figure  5.  Point of three blue gemstone samples drapping at L a*b* 3D coordinates
    Figure  6.  L a*b* projection points projecting on each of the three planes

    根据表 1将蓝宝石、磷灰石、堇青石样品的Chab*L分别做为xyz轴参数在三维坐标进行投点(图 7),并在xyxzyz平面进行投影(图 8)。

    Figure  7.  Point of three blue gemstone samples drapping at L Chab* 3D coordinates
    Figure  8.  L Chab* projection points projecting on each of the three planes

    三种宝石样品的色调角均大致分布在(270°,330°)和(0°,60°)两个区间内,三种宝石的色度学特征(如明度、彩度)在分布在不同色调角区间时有巨大差别,需将样品在更具体的色调角范围内进行颜色质量对比分析。按照分为20个色相,即每个色调角区间为18°将三种宝石样品的色调角顺序排列,对比不同色调角下三种宝石的明度L、彩度C(分别为表 2表 3),同一区间内的多个样品取均值。

    Table  2.  Comparison of lightness of three blue gemstone samples
    hab* L蓝宝石 L磷灰石 L堇青石
    270~288 43.456 38.112 27.695
    288~306 34.788 33.910 18.819
    306~324 31.292 - 29.340
    0~18 - 35.389 33.922
    18~36 35.535 37.049 39.673
    36~54 34.682 37.692 41.426
    54~72 31.872 35.306 -
     | Show Table
    DownLoad: CSV
    Table  3.  Comparison of chromaticity of three blue gemstone samples
    hab* C蓝宝石 C磷灰石 C堇青石
    270~288 13.277 32.199 117.756
    288~306 19.949 18.287 205.954
    306~324 6.931 - 5.826
    0~18 - 9.754 2.123
    18~36 5.340 11.006 1.447
    36~54 6.216 15.007 2.141
    54~72 4.349 14.081 -
     | Show Table
    DownLoad: CSV

    根据表 2图 4图 7图 8,当样品色调角在(270°,324°)时,蓝宝石的明度值大于磷灰石大于堇青石, 此时三种宝石样品均为蓝色、蓝紫色色调,由此推测颜色为蓝色、蓝紫色色调的三种宝石中,L蓝宝石>L磷灰石>L堇青石;当样品色调角在(0°,72°)时,堇青石的明度值增大了许多,而蓝宝石的明度值则稍变小,但三种宝石样品明度值差异很小,均具有良好的明度。

    而据表 3, 图 7图 8可知,当样品色调角在(270°,306°)时,堇青石的彩度值远大于蓝宝石和磷灰石,同理推测颜色为蓝色、蓝紫色色调的三种宝石中,C堇青石>C磷灰石=C蓝宝石,其中彩度最大值出现在主波长为450 nm附近,即显示蓝紫色色调的堇青石具有最优的彩度;而在(0°,72°)色调角区间时,三种宝石彩度值均有所下降,磷灰石的彩度值大于蓝宝石和磷灰石,同理推测颜色为蓝青色至蓝绿色色调的三种宝石中,C磷灰石>C蓝宝石>C堇青石,其中蓝宝石和堇青石在主波长490 nm附近出现最小的彩度值,说明当蓝宝石和磷灰石为蓝绿色调时具有较差的彩度。

    通过三种宝石样品的色度学颜色分析,将颜色差异具体量化为色调、明度、彩度值等的不同,并进一步分析出哪种颜色的宝石为颜色质量优和颜色质量差,这样能够为三种蓝色宝石的颜色分类或分级提供科学、量化的依据。同时归纳出三种宝石之间明显的色度学差异,可以作为一种辅助手段鉴别蓝色宝石的种属。

    (1) 本文蓝宝石、磷灰石和堇青石样品均在560 nm附近具有蓝色、蓝紫色的补色波长,按照主波长分布以及La*b*分析可以将这三种蓝色宝石样品分为蓝色、蓝紫色、蓝青色、蓝绿色四种色调。

    (2) 对比本文三种蓝色宝石样品的色调,蓝宝石样品显示了最强的蓝色调,相较磷灰石样品更显一些绿色调;磷灰石样品也显示很强的蓝色调,相比蓝宝石样品更显示了一些黄色调;而堇青石样品则更带有红蓝色调,或显示一些黄绿色调。

    (3) 本文三种蓝色宝石样品均有上佳至良好的明度,其中纯蓝色色调和蓝紫色色调的蓝宝石样品有最佳颜色品质;蓝青色、蓝绿色色调的磷灰石样品拥有良好的明度和彩度,此色调为最佳颜色品质的磷灰石;堇青石样品的明度与彩度呈一定的负相关,蓝色、蓝紫色色调的堇青石样品有优异的彩度但明度较差。

  • [1]
    朱正芳. 现代颜色技术原理及应用[M]. 北京: 北京理工大学出版社, 2007: 3-4.

    Zhu Z F. Principle and application of modern color technology[M]. Beijing: Beijing Institute of Technology Press, 2007: 3-4. (in Chinese)
    [2]
    阮耀华, 祖恩东. 红色系列尖晶石的颜色定量分析[J]. 昆明理工大学学报(自然科学版), 2017, 42(2): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201702004.htm

    Ruan Y H, Zu E D. Color quantitative analysis of red series spinel[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2017, 42(2): 21-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201702004.htm
    [3]
    阮耀华, 祖恩东, 虞澜, 等. CIE 1931标准色度系统下红色系列尖晶石的色调划分[J]. 桂林理工大学学报, 2017, 37(4): 614-618. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201704009.htm

    Ruan Y H, Zu E D, Yu L, et al. Hue division of red series spinel under CIE 1931 standard chromaticity system[J]. Journal of Guilin University of Technology, 2017, 37(4): 614-618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201704009.htm
    [4]
    田莉. 色度学在红宝石颜色评定中的应用[D]. 北京: 中国地质大学, 2008.

    Tian L. Application of colorimetry in ruby color evaluation[D]. Beijing: China University of Geosciences, 2008. (in Chinese)
    [5]
    董琳玲, 祖恩东. 常见红色宝石的色度学对比分析[J]. 硅酸盐通报, 2015, 34(6): 1 720-1 724. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201506055.htm

    Dong L L, Zu E D. Colorimetric comparative analysis of common red gemstones[J]. Bulletin of Silicate, 2015, 34(6): 1 720-1 724. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201506055.htm
    [6]
    董琳玲, 祖恩东, 贺晓, 等. 红宝石的色度学研究[J]. 硅酸盐通报, 2013, 32(10): 2 169-2 171. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201310055.htm

    Dong L L, Zu E D, He X, et al. Colorimetry of rubies[J]. Bulletin of Silicate, 2013, 32(10): 2 169-2 171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201310055.htm
    [7]
    徐萌, 祖恩东, 占建翔. 南红玛瑙的色度学研究[J]. 昆明理工大学学报(自然科学版), 2017, 42(6): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201706003.htm

    Xu M, Zu E D, Zhan J X. Colorimetry of southern red agate[J]. Journal of Kunming University of Technology (Natural Science Edition), 2017, 42(6): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201706003.htm
    [8]
    高寒. 阿富汗祖母绿的宝石学及产地特征研究[D]. 石家庄: 河北地质大学, 2019.

    Gao H. Gemology and origin characteristics of emeralds from Afghanistan[D]. Shijiazhuang: Hebei University of Geosciences, 2019. (in Chinese)
    [9]
    洪怡颖. 天河石色度学研究及颜色质量评价[D]. 北京: 中国地质大学, 2019.

    Hong Y Y. Chromaticity research and color quality evaluation of Tianhe stone[D]. Beijing: China University of Geosciences, 2019. (in Chinese)
    [10]
    乜东晶, 朱心昆, 邹妤. 绿色翡翠的色度学特征[J]. 昆明理工大学学报(自然科学版), 2016, 41(2): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201602005.htm

    Mei D J, Zhu X K, Zou Yu. Colorimetric characteristics of green jadeite[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2016, 41(2): 20-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201602005.htm
    [11]
    宗翔. 基于GemDialogue色卡对翡翠绿颜色质量评价的可行性研究[D]. 北京: 中国地质大学, 2017.

    Zong X. Feasibility study on color quality evaluation of Emerald Green based on GemDialogue color card[D]. Beijing: China University of Geosciences, 2017. (in Chinese)
    [12]
    李国一. 彩色蓝宝石的颜色质量评价[D]. 北京: 中国地质大学, 2018.

    Li G Y. Color quality evaluation of colored sapphire[D]. Beijing: China University of Geosciences, 2018. (in Chinese)
    [13]
    De Meo S, Plutino A, Rizzi A. Assessing color of gemstones[J]. Color Research & Application, 2020, 45(2): 224-234.
    [14]
    Schmetzer K, Bernhardt H J, Hainschwang T. Measurement and interpretation of growth patterns in chrysoberyl, including alexandrite[J]. Journal of Gemmology, 2011, 32(5): 72-78.
    [15]
    Sotnikova V F, Nikolaev A G, Kislov E V, et al. Crystal chemical features and color nature of sapphire from the Naryn-Gol Deposit (Buryatia)[M]. Minerals: Structure, Properties, Methods of Investigation. Springer, Cham, 2020: 243-249.
    [16]
    Cheng R, Guo Y. Study on the effect of heat treatment on amethyst color and the cause of coloration[J]. Scientific Reports, 2020, 10(1): 1-12. http://www.socolar.com/Article/Index?aid=200255832621&jid=200000073720
    [17]
    滕秀金. 颜色测量技术[M]. 北京: 中国计量出版社, 2007: 42-43.

    Teng X J. Color measurement technology[M]. Beijing: China Metrology Press, 2007: 42-43. (in Chinese)
    [18]
    何国兴. 颜色科学[M]. 上海: 东华大学出版社, 2004: 35-36.

    He G X. Color science[M]. Shanghai: Donghua University Press, 2004: 35-36. (in Chinese)
    [19]
    邹保桦. 色彩的分类和特征[J]. 江苏纺织, 2009(5): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFA200905017.htm

    Zou B H. Classification and characteristics of color[J]. Jiangsu Textile, 2009(5): 35-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFA200905017.htm
  • Related Articles

    [1]LI Xingtong, XU Chang, ZHENG Jinyu, SHEN Hongtao, Shen Andy Hsitien, ZHANG Qian. Gemmological and Mineralogical Characteristics of Apatite from Madagascar with Directional Inclusions[J]. Journal of Gems & Gemmology, 2024, 26(S1): 104-107.
    [2]TANG Ziwei, LI Kun. Colour Measurement Condition of Precious Metal Alloy Based on Chromatics[J]. Journal of Gems & Gemmology, 2024, 26(3): 67-75. DOI: 10.15964/j.cnki.027jgg.2024.03.008
    [3]ZHOU Qingchao, LIU Hao, Andy Hsitien Shen. Chromaticity Study of Emerald under Chelsea Filter[J]. Journal of Gems & Gemmology, 2021, 23(5): 16-24. DOI: 10.15964/j.cnki.027jgg.2021.05.002
    [4]ZHANG Lili, YUAN Xinqiang. HSL Chromaticity Characteristic of Green Jadeite Jade[J]. Journal of Gems & Gemmology, 2017, 19(2): 20-33. DOI: 10.15964/j.cnki.027jgg.2017.02.003
    [5]DAI Zhengzhi, LYU Xiaoyu, GU Xingyu, CHEN Dingying. Colour Analysis of Turquoise Using Uniform Chromaticity Coordinate[J]. Journal of Gems & Gemmology, 2016, 18(2): 9-14.
    [6]LYU Xiao-yu, XU Ru-peng, TANG Hong-yun, CHEN Ding-ying, ZHANG Shu-yun. A Case Study: GRS“Pigeon's blood”Ruby Colour Analysis and Implications[J]. Journal of Gems & Gemmology, 2012, 14(4): 44-49.
    [7]PAN Feng, REN Jin. Quantitative Appraisal for Colour of Ruby[J]. Journal of Gems & Gemmology, 2007, 9(2): 25-28.
    [8]WANG Rong, YUAN Xin-qiang. Feasible Research on Colour of Jadeite Jade Measured by Colorimetry[J]. Journal of Gems & Gemmology, 2007, 9(2): 20-24,28.
    [9]ZHANG Hui, ZHANG Bei-li, WANG Man-jun. Application of Method of Colour Measurement in Colour Appraisement of Jadeite Jade[J]. Journal of Gems & Gemmology, 2006, 8(3): 16-20.
    [10]Xu Rupeng. QUANTITATIVE DESCRIPTION OF GREEN JADEITE[J]. Journal of Gems & Gemmology, 1999, 1(2): 29-32.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Figures(8)  /  Tables(3)

    Article Metrics

    Article views (193) PDF downloads (49) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return