LI Xingping, LI Yan. Ageing Characteristic and Volatile Change of Bloodish Amber from Myanmar in Ageing Process[J]. Journal of Gems & Gemmology, 2023, 25(4): 60-68. DOI: 10.15964/j.cnki.027jgg.2023.04.006
Citation:
LI Xingping, LI Yan. Ageing Characteristic and Volatile Change of Bloodish Amber from Myanmar in Ageing Process[J]. Journal of Gems & Gemmology, 2023, 25(4): 60-68. DOI: 10.15964/j.cnki.027jgg.2023.04.006
LI Xingping, LI Yan. Ageing Characteristic and Volatile Change of Bloodish Amber from Myanmar in Ageing Process[J]. Journal of Gems & Gemmology, 2023, 25(4): 60-68. DOI: 10.15964/j.cnki.027jgg.2023.04.006
Citation:
LI Xingping, LI Yan. Ageing Characteristic and Volatile Change of Bloodish Amber from Myanmar in Ageing Process[J]. Journal of Gems & Gemmology, 2023, 25(4): 60-68. DOI: 10.15964/j.cnki.027jgg.2023.04.006
Amber aging is an inevitable process in the natural environment, which can cause adverse effects such as colour deepening and turning red, hardness decreasing, and a large number of cracks on the surface, leading to the serious spalling on the surface, causing irreversible damage to the precious amber relics. This study investigated the microscopic characteristics, thermodynamic characteristics and volatile matter changes of the bloodish amber from Myanmar, and discussed the transformed relationship between physical properties and composition/structure changes in the ageing process. The degree of crosslinking structure of bloodish amber from Myanmar was gradually decreasing in ageing process, while the varieties and contents of volatiles were declining. A portion of macromolecule were oxidized and degraded to micromolecule when the colour of aged bloodish amber was turning brown, which was the vital reason of cracking production. Tetralin, 6-acetyl-8-isopropyl-2, 5-dimethyl-, as a micromolecule, could indicate the urgency of the dark conserving environment with low oxygen for aged amber from Myanmar. This research explored the analytical application of thermodynamics and chromatography/mass spectrometry in the organic gemstones, and the research results could provide protection suggestion for the aged amber relics.
热重及差热分析(thermogravimetric analysis and differential scanning calorimetry,TGA-DSC)是石化树脂(琥珀及柯巴树脂)研究中常用的方法,多用于研究树脂的石化过程,对鉴定石化树脂的成熟度[16],阐明石化树脂成岩过程[17],以及确定石化树脂的古植物学起源[18]有重要作用。在前人[19]的研究中,石化树脂的成熟度与玻璃化转变温度(glass transition temperature,Tg)之间存在相关性,该现象在半石化的柯巴树脂更为明显。这是由于Tg与聚合物的交联程度有关,随着石化树脂成熟的增加,对应交联程度更高,Tg也相应增加[17]。另外,热脱附色谱质谱分析(thermal desorption gas chromatography mass spectrometry,TD-GC/MS)作为一种针对挥发份的成分分析方法在琥珀研究中有初步尝试。Virgolici等[20-21]利用TD-GC/MS方法分析了出产于罗马尼亚和波罗的海的琥珀,发现通过主成分分析中挥发份成分可以将二者区分。TD-GC/MS是指在样品管中通入惰性载气流的条件下,加热样品管到设定的温度,使样品中的挥发份或半挥发份得以脱附或分离,随后这些挥发份或半挥发份随载气进入色谱质谱分析仪器。在本研究中除探索老化过程中挥发性成分变化以外,还可发现因老化降解生成的小分子物质。
Figure
3.
The cracks in moderately aged (MA) and seriously aged (SA) bloodish amber from Myanmar (the yellow dotted line represented the distribution of the main cracks)
Figure
5.
The total ion chromatograms of the bloodish amber samples from Myanmar with different ageing degree by TD-GC/MS analysis, and the corresponding compounds of the peaks
Simoneit B R T, Oros D R, Karwowski L, et al. Terpenoid biomarkers of ambers from Miocene tropical paleoenvironments in Borneo and of their potential extant plant sources[J]. International Journal of Coal Geology, 2020(221): 103 430.
[2]
Kocsis L, Usman A, Jourdan A L, et al. The Bruneian record of "Borneo Amber": A regional review of fossil tree resins in the Indo-Australian Archipelago[J]. Earth-Science Reviews, 2020(201): 103 005.
[3]
Chen D, Zeng Q, Yuan Y, et al. Baltic amber or Burmese amber: FTIR studies on amber artifacts of Eastern Han Dynasty unearthed from Nanyang[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019(222): 117 270.
[4]
Li X P, Wang Y M, Shi G H, et al. Evaluation of natural ageing responses on Burmese amber durability by FTIR spectroscopy with PLSR and ANN models[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023(285): 121 936.
[5]
Pastorelli G, Richter J, Shashoua Y. Evidence concerning oxidation as a surface reaction in Baltic amber[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012(89): 268-269.
[6]
Pastorelli G. A comparative study by infrared spectroscopy and optical oxygen sensing to identify and quantify oxidation of Baltic amber in different ageing conditions[J]. Journal of Cultural Heritage, 2011, 12(2): 164-168. doi: 10.1016/j.culher.2010.11.002
[7]
Scalarone D, Duursma M C, Boon J J, et al. MALDI-TOF mass spectrometry on cellulosic surfaces of fresh and photo-aged di-and triterpenoid varnish resins[J]. Journal of Mass Spectrometry, 2010, 40(12): 1 527-1 535.
[8]
Colombini M P, Ribechini E, Rocchi M, et al. Analytical pyrolysis with in-situ silylation, Py(HMDS)-GC/MS, for the chemical characterization of archaeological and historical amber objects[J]. Heritage Science, 2013, 1(1): 1-10. doi: 10.1186/2050-7445-1-1
[9]
Mccoy V E, Boom A, Kraemer M M S, et al. The chemistry of American and African amber, copal, and resin from the genus Hymenaea[J]. Organic Geochemistry, 2017(113): 43-54.
[10]
Anderson K B, Winans R E, Botto R E. The nature and fate of natural resins in the geosphere-Ⅱ. Identification, classification and nomenclature of resinites[J]. Organic Geochemistry, 1992, 18(6): 829-841. doi: 10.1016/0146-6380(92)90051-X
[11]
Lambert J B, Santiago-Blay J A, Anderson K B. Chemical signatures of fossilized resins and recent plant exudates[J]. Angewandte Chemie-International Edition, 2008, 47(50): 9 608-9 616. doi: 10.1002/anie.200705973
[12]
Poulin J, Helwig K. Inside amber: New insights into the macromolecular structure of Class Ib resinite[J]. Organic Geochemistry, 2015(86): 94-106.
Liao W C, Fan X Y, Shi G H, et al. Study on chemical process of amber formation by infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(10): 3 167-3 173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202010036.htm
[14]
Cruickshank R, Ko K. Geology of an amber locality in the Hukawng Valley, northern Myanmar[J]. Journal of Asian Earth Sciences, 2003, 21(5): 441-455. doi: 10.1016/S1367-9120(02)00044-5
Ragazzi E, Roghi G, Giaretta A, et al. Classification of amber based on thermal analysis[J]. Thermochimica Acta, 2003, 404(1): 43-54.
[17]
Pagacz J, Naglik B, Stach P, et al. Maturation process of natural resins recorded in their thermal properties[J]. Journal of Materials Science, 2020, 55(10): 4 504-4 523. doi: 10.1007/s10853-019-04302-0
[18]
Trevisani E, Ragazzi E, Roghi G. First report of amber from the Early Eocene Belluno Flysch (Southern Alps, Northern Italy)[J]. Bollettino Della Societa Paleontologica Italiana, 2011, 50(1): 23-28.
[19]
Zhao J, Ragazzi E, Mckenna G B. Something about amber: Fictive temperature and glass transition temperature of extremely old glasses from copal to Triassic amber[J]. Polymer, 2013, 54(26): 7 041-7 047. doi: 10.1016/j.polymer.2013.10.046
[20]
Vȋrgolici M, Petroviciu I, Litescu S C, et al. TD/CGC/MS and FT-IR characterization of archaeological amber artefacts from Romanian collections (Roman age)[J]. Revue Roumaine de Chimie, 2010(55): 349-355.
[21]
Vȋrgolici M, Ponta C, Manea M, et al. Thermal desorption/gas chromatography/mass spectrometry approach for characterization of the volatile fraction from amber specimens: A possibility of tracking geological origins[J]. Journal of Chromatography A, 2010, 1 217(12): 1 977-1 987.
[22]
Mccoy V E, Barthel H J, Boom A, et al. Volatile and semi-volatile composition of Cretaceous amber[J]. Cretaceous Research, 2021, 127(1): 104 958.
[23]
Bisulca C, Nascimbene P C, Elkin L, et al. Variation in the deterioration of fossil resins and implications for the conservation of fossils in amber[J]. American Museum Novitates, 2012, 2 012(3 734): 1-19.
[24]
Pagacz J, Stach P, Natkaniec-Nowak L, et al. Preliminary thermal characterization of natural resins from different botanical sources and geological environments[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(6): 4 279-4 288. doi: 10.1007/s10973-019-08157-0
[25]
Dutta S, Mallick M, Kumar K, et al. Terpenoid composition and botanical affinity of cretaceous resins from India and Myanmar[J]. International Journal of Coal Geology, 2011, 85(1): 49-55. doi: 10.1016/j.coal.2010.09.006
[26]
Sonibare O O, Huang R-J, Jacob D E, et al. Terpenoid composition and chemotaxonomic aspects of Miocene amber from the Koroglu Mountains, Turkey[J]. Journal of Analytical and Applied Pyrolysis, 2014(105): 100-107.
[27]
Chaler R, Grimalt J O. Fingerprinting of cretaceous higher plant resins by infrared spectroscopy and gas chromatography coupled to mass spectrometry[J]. Phytochemical Analysis, 2005, 16(6): 446-450. doi: 10.1002/pca.868
[28]
Otto A, Wilde V. Sesqui-, Di-, and triterpenoids as chemosystematic markers in extant conifers-A review[J]. Botanical Review, 2001, 67(2): 141-238. doi: 10.1007/BF02858076
[29]
Otto A, Simoneit B R, Rember W C. Resin compounds from the seed cones of three fossil conifer species from the Miocene Clarkia flora, Emerald Creek, Idaho, USA, and from related extant species[J]. Review of Palaeobotany and Palynology, 2003, 126(3): 225-241.
[30]
Anderson K B. The nature and fate of natural resins in the geosphere Part XI. Ruthenium tetroxide oxidation of a mature Class Ib amber polymer[J]. Geochemical Transactions, 2001, 2(1): 1-4. doi: 10.1186/1467-4866-2-1