CHEN Xiaolong, WANG Jiayin, CHEN Yixin, GAO Shang. Gemmological and Mineralogical Characteristics of Light Blue-Green Phosphophyllite from Bolivia[J]. Journal of Gems & Gemmology, 2022, 24(4): 18-25. DOI: 10.15964/j.cnki.027jgg.2022.04.003
Citation: CHEN Xiaolong, WANG Jiayin, CHEN Yixin, GAO Shang. Gemmological and Mineralogical Characteristics of Light Blue-Green Phosphophyllite from Bolivia[J]. Journal of Gems & Gemmology, 2022, 24(4): 18-25. DOI: 10.15964/j.cnki.027jgg.2022.04.003

Gemmological and Mineralogical Characteristics of Light Blue-Green Phosphophyllite from Bolivia

More Information
  • Received Date: January 15, 2022
  • Phosphophyllite is a rare gemstone. Currently, there is little gemmological and spectroscopic characteristic study on phosphophyllite in China. Detailed determination and analysis of a light blue-green phosphophyllite sample from Bolivia was carried out by X-ray fluorescence spectroscopy (XRF), electron probe (EPMA), laser Raman spectrometer (Raman), infrared spectrometer, UV-Vis spectrophotometer and other test apparatuses. XRF analysis showed that Fe, Zn, P were the main elements of phosphophyllite, and there were Mn, Na, K, Ca and other trace elements in phosphophyllite. The quantitative analysis of Fe, Zn, P and Mn elements in Bolivian phosphophyllite was carried out by electron probe. The average molecular formula was Zn2.18(Fe0.92Mn0.01)(P0.99O4)2·4H2O. Raman spectrum test shows that the Raman peak at 325 cm-1 is caused by M-O (M is metal cation Zn2+, Fe2+, Mn2+) vibration, and the Raman peak at 400-1 200 cm-1 is caused by PO43-, the Raman peaks at 1 602, 3 153, 3 374 cm-1 and 3 566 cm-1 are caused by the vibration of water molecules. The dark brown associated mineral on the phosphophyllite sample from Bolivia is sphalerite, and the Raman shifts are at 228, 304, 351 cm-1.Infrared spectrum test shows that the band in the range of 400-1 200 cm-1 is caused by PO43-, and the band in the range of 1 600-3 600 cm-1 is caused by the vibration of water molecules, and the white associated mineral on phosphophyllite sapmle from Bolivia is illite, whose absorption peaks are at 3 650, 3 625, 3 425, 1 646, 1 028, 538, 474, 418 cm-1.The UV-Vis spectrophotometer test shows that the absorption line of phosphophyllite is consistent with the ferrographic characteristic of three strong absorption bands at blue-green region of 380, 448 nm and 467 nm, indicating that the main chromogenic element of phosphophyllite is Fe2+.The absorption band at 501 nm was consistent with the manganese spectroscopy characteristic, indicating that the chromogenic element of phosphophyllite may also be Mn3+.
  • [1]
    Kleber W, Liebau F, Piatkowiak E. Zur struktur des phosphophyllits Zn2Fe[PO4]2·4H2O[J]. Acta Crystallographica, 1961, 14(7): 795-795. doi: 10.1107/S0365110X61002369
    [2]
    Hill R J. The crystal structure of phosphophyllite[J]. American Mineralogist, 1977, 62(7-8): 812-817.
    [3]
    Scholz R, Frost R L, Xi Y, et al. Vibrational spectroscopic characterization of the phosphate mineral phosphophyllite - Zn2Fe(PO4)2·4H2O, from Hagendorf Süd, Germany and in comparison with other zinc phosphates[J]. Journal of Molecular Structure, 2013(1 039): 22-27.
    [4]
    董雅洁, 鲁先虎, 石卫芳, 等. 磷叶石的宝石学特征[A]. 北京: 中国国际珠宝首饰学术交流会论文集[C]. 2019: 181-184.

    Dong Y J, Lu X H, Shi W F, et al. Gemological characteristics of phosphorite[A]. Proceedings of China International Jewelry Academic Exchange[C]. 2019: 181-184. (in Chinese)
    [5]
    郑巧荣. 含水矿物的电子探针定量分析[J]. 岩矿测试, 1991(1): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS199101008.htm

    Zheng Q R. Electron microprobe quantitative analysis of water-bearing minerals[J]. Rock and mineral testing, 1991(1): 30-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS199101008.htm
    [6]
    Aines R D, Rossman G R. Water in minerals? A peak in the infrared[J]. Journal of Geophysical Research, 1984, 89(B6): 4 059. doi: 10.1029/JB089iB06p04059
    [7]
    中本一雄, 黄德如. 无机和配位化合物的红外和拉曼光谱[M]. 北京: 化学工业出版社, 1986.

    Zhong B Y X, Huang D R. Infrared and Raman spectra of inorganic and coordination compounds[M]. Beijing: Chemical Industry Press, 1986. (in Chinese)
    [8]
    Frost R L, Xi Y, Scholz R. Vibrational spectroscopic characterization of the phosphate mineral anapaite Ca2Fe2+(PO4)2·4(H2O)[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2013, 46(6): 441-446.
    [9]
    Chukanov N V, Vigasina M F. Vibrational (infrared and Raman) spectra of minerals and related compounds[M]. Springer, 2020.
    [10]
    Babedi L, Von der Heyden B P, Neethling P H, et al. The effect of Cd-substitution on the Raman vibrational characteristics of sphalerite[J]. Vibrational Spectroscopy, 2019(105): 102 968.
    [11]
    Wise M A, Brown C D. Mineral chemistry, petrology and geochemistry of the Sebago granite-pegmatite system, Southern Maine, USA[J]. Journal of Geosciences, 2010, 55(1): 3-26.
    [12]
    韩秀伶, 陈开惠. 高岭石-多水高岭石演化系列的红外吸收光谱研究[J]. 地质科学, 1982(1): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198201009.htm

    Han X, Chen K H. Infrared absorption spectra of kaolinite-polyhydrokaolinite evolution series[J]. Geological Science, 1982 (1): 71-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198201009.htm
    [13]
    张秉良, 何昌荣, 刘行松, 等. 云南小湾断层泥矿物特征及其构造意义[J]. 地质科学, 2000, 35(2): 197-205. doi: 10.3321/j.issn:0563-5020.2000.02.008

    Zhang B L, He C R, Liu X S, et al. Mineral characteristics and tectonic significance of Xiaowan fault mud in Yunnan[J]. Geological Science, 2000, 35 (2): 197-205. (in Chinese) doi: 10.3321/j.issn:0563-5020.2000.02.008
    [14]
    张蓓莉. 系统宝石学(第二版)[M]. 北京: 地质出版社, 2006.

    Zhang B L. Systematic gemology (Second Edition)[M]. Beijing: Geological Press, 2006. (in Chinese)
    [15]
    马尔福宁, 李高山. 矿物物理学导论[M]. 北京: 地质出版社, 1984.

    Malfoin, Li G S. Introduction to mineral physics[M]. Beijing: Geological Press, 1984. (in Chinese)
  • Related Articles

    [1]ZHENG Yimeng, PEI Jingcheng, LAI Xiaojing. Gemmological and Spectral Characteristics of Ruby from Winza, Tanzania[J]. Journal of Gems & Gemmology, 2024, 26(4): 1-11. DOI: 10.15964/j.cnki.027jgg.2024.04.001
    [2]LI Shiyi, LIU Yimiao, LI Yan, JIANG Jie. Gemmological and Spectral Characteristics of Ruby from Huameuang, Houaphanh Province, Laos[J]. Journal of Gems & Gemmology, 2023, 25(5): 83-95. DOI: 10.15964/j.cnki.027jgg.2023.05.009
    [3]ZHANG Longbo, LIN Bihan, WAN Shuiyun, CHEN Tao, ZHANG Qian. Gemmological and Spectral Characteristics of Pink Garnet from Mogok, Myanmar[J]. Journal of Gems & Gemmology, 2023, 25(3): 16-21. DOI: 10.15964/j.cnki.027jgg.2023.03.003
    [4]NING Peiying, TANG Na, LI Huihuang, ZHANG Tianyang, SUN Zhulin. Gemmological Characteristic of Poudretteite[J]. Journal of Gems & Gemmology, 2023, 25(2): 6-10. DOI: 10.15964/j.cnki.027jgg.2023.02.002
    [5]YU Qidan, LI Liping. Gemmological and Spectral Characteristics of Corallium sp. nov. from Midway Island[J]. Journal of Gems & Gemmology, 2021, 23(1): 27-39. DOI: 10.15964/j.cnki.027jgg.2021.01.004
    [6]Su XU, Xiaoping SHI, Jun LIAO. Gemmological Characteristic and Spectroscopy Feature of Afghanite[J]. Journal of Gems & Gemmology, 2020, 22(1): 26-32. DOI: 10.15964/j.cnki.027jgg.2020.01.004
    [7]XU Yafen, DI Jingru, FANG Fei. Gemmological and Spectral Characteristic of Sapphire from Australia[J]. Journal of Gems & Gemmology, 2019, 21(2): 24-33. DOI: 10.15964/j.cnki.027jgg.2019.02.004
    [8]WANG Qingnan, DI Jingru. Gemmological and Spectral Characteristic of Ruby from Yen Bai, Vietnam[J]. Journal of Gems & Gemmology, 2017, 19(4): 1-10. DOI: 10.15964/j.cnki.027jgg.2017.04.001
    [9]YE Min, Andy Hsitien Shen, WEI Peng. Gemmological and Spectral Characteristic of Zultanite: Colour-Change Diaspore[J]. Journal of Gems & Gemmology, 2016, 18(5): 34-39.
    [10]LIANG Ting, XIE Xing. Gemmological Characteristics of Hemimorphite from Yunnan Province[J]. Journal of Gems & Gemmology, 2003, 5(4): 34-36.

Catalog

    Article Metrics

    Article views (496) PDF downloads (48) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return