
Citation: | LIU Jia, LIU Fang li, WANG Ya mei, LIU Fen, HE Chong. Spectral Characteristic of Beryl Containing Hematite Inclusion[J]. Journal of Gems & Gemmology, 2019, 21(4): 19-24. DOI: 10.15964/j.cnki.027jgg.2019.04.003 |
绿柱石是一种含有稀有金属元素Be的六方环状硅酸盐矿物,是重要的宝石矿物之一。绿柱石的颜色多样,还有不同的变种如海蓝宝石、祖母绿等,内部纯净的绿柱石具有较高的商业价值,但市场所见绿柱石品种大多含有包裹体,而且不同产地绿柱石的包裹体特征不同。前人[1-4]对绿柱石中不同形态和种类的包裹体进行了较深入分析,其中包含固体包裹体、熔融包裹体、气液包裹体等,主要包裹体矿物类型有云母片、方解石等。本文所研究绿柱石样品含有大量的定向排列的包裹体,甚至可形成猫眼效应,Jean-Marie Arlabosse[5]对来自马达加斯加的日光绿柱石进行研究,由于大量片状赤铁矿包裹体的存在,产生日光效应,与本文研究样品类似。但其仅通过红外光谱确定基底为绿柱石,使用EDXRF定性测得样品中含大量Fe元素,来推断包裹体为赤铁矿,研究内容较为局限,含大量推断结论,到目前为止,未见详细的理论数据支撑。
笔者对以红褐色赤铁矿为主要包裹体的绿柱石品种进行较详细的谱学研究,为该品种绿柱石的鉴定提供了丰富的谱学数据。
在中国地质大学(武汉)珠宝学院宝石成分及光谱分析室利用M205A显微照相机对该绿柱石样品的基本特征进行了观察。图 1a为成品绿柱石样品照片,图 1b为放大后其内部定向排列的赤铁矿包裹体照片,赤铁矿包裹体呈片柱状定向分布。绿柱石原石样品由内向外可见明显的分区(图 1c),颜色差异主要是由包裹体含量不同造成,透明度也由好变差,其中红框内部分为核部Ⅰ区。核部Ⅰ区(图 1d)含定向赤铁矿包裹体较多,形态规则,呈片柱状平行绿柱石c轴方向生长,使样品整体颜色显红色。通过静水称重测定核部Ⅰ区密度为2.758 g/cm3。
采用仪器型号为Agilent 7700e激光剥蚀电杆耦合等离子质谱仪(LA-ICP-MS)对核部Ⅰ区样品任意取点进行成分定量分析。测试条件:激光能量80 mJ,能量密度5.5 J/cm2,激光剥蚀束斑直径44 μm,频率6 Hz,激光剥蚀次数300 pauls。测试时使用合成玻璃NIST 610,BHVO-2G,BCR-2G,和BIR-1G(美国地质协会USGS系列)作为外部标准样品。
利用中国地质大学(武汉)珠宝学院宝石成分及光谱分析室Bruker Senterra R200L激光拉曼光谱仪对绿柱石样品进行原位拉曼光谱测试。测试条件:激光器532 nm,分辨率3~5 cm-1,波长范围45~1 550 cm-1,积分时间10 s,积分次数5,光圈50×1 000 μm,激光能量20 mW。
对核部Ⅰ区样品主矿物进行切割,粉碎、研磨至200目粒径大小,并利用中国地质大学珠宝学院宝石成分及光谱分析室Bruker Vertex80进行溴化钾压片测试。测试条件:分辨率4 cm-1,积分时间32 s,波长范围4 000~400 cm-1。
使用中国地质大学珠宝学院宝石成分及光谱分析室Jasco MSV-5200显微紫外可见近红外光谱仪对Ⅰ区绿柱石样品进行测试,测试条件:扫描范围300~2 000 nm,扫描速度1 000 nm/min,数据间隔1 nm,光斑直径为100 μm,Polarizer 0° & 90°。
绿柱石是铍铝硅酸盐Be3Al2(SiO3)6,其中Be和Al可被不同的微量元素所替代,能使绿柱石产生各种颜色,常见致色元素有Fe、Mn、Cs。对核部Ⅰ区样品基底矿物进行ICP成分测定,主要化学成分w(BeO)=15.00%,w(Al2O3)=19.30%,w(SiO2)=64.10%,w(TFe)=0.77%,微量元素w(Mn)=81.70×10-6,w(Cs)=943×10-6,w(Ti)=24.80×10-6,w(V)=10.10×10-6,w(Cr)=0.69×10-6。其中碱性金属元素w(Na2O)=0.35%, w(K2O)=0.04%, 碱性元素总量(Na+K+Cs)为0.48%。
由图 2可以看出,前人研究[6]贫碱型绿柱石Si质量分数65.00%~66.90%,Na+K+Cs质量分数0.10%~0.71%,富碱型绿柱石Si质量分数62.50%~65.00%,Na+K+Cs质量分数0.89%~1.87%之间。本文样品成分Si质量分数为64.10%,其中Si元素被Al3+替代,结构通道中的碱性元素作为补偿离子存在。但Na+K+Cs质量分数为0.48%,为贫碱型绿柱石碱性元素特征。因此可见本文研究绿柱石样品成分具有一定独特性, 为贫Si,贫碱,富Al型。
对Ⅰ区绿柱石样品进行拉曼光谱测定,结果(图 3)显示,平行c轴拉曼位移为321、397、448、532、623、685、1 003、1 068 cm-1; 垂直c轴拉曼位移为290、321、397、421、443、582、685、770、914、1 003、1 068、1 238、1 386 cm-1。其中290、421、582 cm-1归属于E2g振动所致,321、397 cm-1为Ag+E2g叠加伸缩环振动所致,443、448 cm-1为O-S-O的E2g振动所致,532 cm-1为Al-O伸缩振动所致,623 cm-1与环振动Ag有关,685 cm-1为Be-O伸缩振动所致,914、1 003、1 068、1 238 cm-1为Si-O伸缩振动所致,1 386 cm-1为CO2振动所致[7-10]。Ⅰ区样品中赤红色包裹体拉曼光谱见图 4,除主矿物绿柱石拉曼位移(321、532、685、914、1 003、of beryl sample 1 068 cm-1)外,包裹体的拉曼位移为227、243、295、499、609、1 309 cm-1,与RRUFF数据库中赤铁矿拉曼位移一致。
Ⅰ区样品红外光谱结果图 5,1 400~400 cm-1是Si-O、Be-O、Al-O的弯曲和伸缩振动所致,1 200~900 cm-1与Si-O的伸缩振动有关,部分振动可能与Si-O环的变形有关,与四面体中存在的缺陷有关。436 cm-1为SiO4的弯曲振动所致,492 cm-1和524 cm-1为Al-O的伸缩振动所致,592 cm-1和652 cm-1归属于E1u振动所致,680、745、808 cm-1为Be-O的伸缩振动所致,956、1 019、1 199 cm-1为Si-O的伸缩振动所致[7-8, 11]。1 199 cm-1附近的红外谱峰分裂为1 199,1 150 cm-1两个峰,位于1 199 cm-1的红外谱峰与1 150 cm-1处的肩峰的强度比率越高,碱性元素(K+Na+Cs)的质量分数越低。1 150 cm-1肩峰可能是由于X-O的振动所致,其中X为二价或三价阳离子对Si离子的替代,剩余电荷补偿由Na,K,Cs等碱性元素补偿,也可能与M-O的振动有关,其中M是位于通道中的碱性离子[6]。
绿柱石样品的非偏振红外吸收光谱(图 6)显示,3 699 cm-1为Ⅰ型水的反对称伸缩振动所致,3 596 cm-1为Ⅱ型水的对称伸缩振动所致、3 661 cm-1为Ⅱ型水的反对称伸缩振动所致。绿柱石中碱金属的含量也与水的结构类型有显著的相关性,绿柱石晶体结构中碱金属含量的增加促使Ⅰ型水向Ⅱ型水转变,对图 5中Ⅰ型水和Ⅱ型水吸收强度分别进行面积积分,得知样品中Ⅰ型水含量高于Ⅱ型水,则碱性元素相对缺乏[12-14], 该分析与样品成分结果相对应。
由于绿柱石样品中赤铁矿包裹体的生长方向与其c轴方向一致,定向后对Ⅰ区样品进行偏振吸收光谱测定,结果如图 7所示。E⊥c轴偏振371、427 nm处分别为Fe3+电子自旋禁闭d-d跃迁6A1g→4T2g(4D)、6A1g→4A1[4],可见Fe2+的820 nm范围内的宽吸收带。近红外区范围内的尖峰1 369、1 402、1 835、1 897、1 956 nm是典型的H2O分子吸收,其中1 402、1 835、1 956 nm为Ⅰ型水[15-17]。E//c轴偏振吸收光谱中427 nm处为Fe3+电子自旋禁闭d-d跃迁6A1g→4A1,近红外区范围内的尖峰1 152、1 402、1 467、1 897 nm是典型的H2O分子吸收,其中1 402、1 467 nm为Ⅰ型水[15-17]。
Ⅰ型结构水的二次对称轴垂直于绿柱石晶体c轴,当少量碱性金属离子进入晶格,水分子中O离子旋转90°,使水分子二次对称轴平行于晶体c轴,称为Ⅱ型水。在平行c轴生长方向,Ⅱ型水强度明显较垂直c轴方向的强,结合成分分析,所测碱性元素存在于平行c轴的环形孔道中[13]。
(1) 通过LA-ICP-MS成分测定,该绿柱石样品的化学成分为w(BeO)=15.00%,w(Al2O3)=19.30%,w(SiO2)=64.10%,w(TFe)=0.77%,微量元素Mn、Cs、Ti、V等含量分别为81.7×10-6、943.0×10-6、24.8×10-6、10.1×10-6, 碱性元素总量(Na+K+Cs)为0.48%,为贫Si,贫碱型。
(2) 拉曼光谱测定发现,样品为绿柱石晶体,核部Ⅰ区赤铁矿包裹体沿c轴方向呈片状定向生长。
(3) 非偏振红外光谱测试及拉曼光谱测试结果表明,绿柱石内部结构中同时存在Ⅰ型水和Ⅱ型水,以Ⅰ型水为主; 偏振近红外吸收光谱显示不同方向水的类型及强度有所差异,存在方向性。
(4) 成分测定及紫外-可见光谱分析发现,绿柱石样品中含一定量的二价Fe离子、Mn离子及Cs离子; 三价Fe离子吸收峰位主要由赤铁矿包裹体中Fe或者绿柱石本身三价Fe所致。
[1] |
裴景成, 张汉凯. 绿柱石中包裹体研究进展[J]. 地质科技情报, 2000, 19(1): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200001007.htm
|
[2] |
吴长年, 杨升祖. 新疆阿尔泰库威和可可托海伟晶岩绿柱石中包裹体研究[J]. 南京大学学报(自然科学), 1995(2): 350-356. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ502.028.htm
|
[3] |
Thomas R, Davidson P, Badanina E. A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: Implications for pegmatite-forming melt systems[J]. Mineralogy & Petrology, 2009, 96(3-4): 129-140. doi: 10.1007/s00710-009-0053-6
|
[4] |
闫晨, Moroz I I, Eliezri I Z. 不同产地祖母绿中的矿物包裹体[J]. 宝石和宝石学杂志, 1999, 1(3): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB199903015.htm
|
[5] |
Arlabosse J M. "Sunberyl" -beryl with hematite platelets inclusion [EB/OL]. [2019-01-23]. http://www.gemsolidphase.com/publications.php.
|
[6] |
Le T, Huong T, Häger T. On some controversially-discussed Raman and IR bands of beryl[J]. VNU Journal of Science, Earth Sciences, 2010, 26(1): 32-41. http://www.researchgate.net/publication/268384811_On_some_controversially-discussed_Raman_and_IR_bands_of_beryl
|
[7] |
Ostrooumov M. Aquamarine from a new primary deposit in Mexico[J]. Gems & Gemology, 2016, 52(3): 317. http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Gems%20and%20Gemology&atitle=Aquamarine%20from%20a%20new%20primary%20deposit%20in%20Mexico
|
[8] |
ヒodziński M, Sitarz M, Stec K, et al. ICP, IR, Raman, NMR investigations of beryls from pegmatites of the Sudety Mts[J]. Journal of Molecular Structure, 2005(744-747): 1 005-1 015.
|
[9] |
Hagemann H, Lucken A, Bill H, et al. Polarized Raman spectra of beryl and bazzite[J]. Physics & Chemistry of Minerals, 1990, 17(5): 395-401. doi: 10.1007/BF00212207
|
[10] |
Charoy B, Donato P D, Barres O, et al. Channel occupancy in an alkali-poor beryl from Serra Branca (Goias, Brazil): Spectroscopic characterization[J]. American Mineralogist, 1996, 81(3-4): 395-403. doi: 10.2138/am-1996-3-414
|
[11] |
Aurisicchio C, Fioravanti G, Grubessi O, et al. Reappraisal of the crystal chemistry of beryl [J]. American Mineralogist, 1988, 73(7): 826-837. http://www.researchgate.net/publication/292474151_Reappraisal_of_the_crystal_chemistry_of_beryl
|
[12] |
周天怡, 陈衍景, 张辉. 新疆阿尔泰伟晶岩中绿柱石拉曼光谱特征研究——以可可托海3号脉与阿祖拜328、528号脉为例[J]. 岩石矿物学杂志, 2014(S2): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW2014S2013.htm
|
[13] |
Huong L T. Confocal micro-Raman spectroscopy: A powerful tool to identify natural and synthetic emeralds[J]. Gems & Gemology, 2010, 46(1): 36-41. doi: 10.5741/gems.46.1.36
|
[14] |
Adamo I, Pavese A, Prosperi L, et al. Aquamarine, Maxixe-type beryl, and hydrothermal synthetic blue beryl: Analysis and identification[J]. Gems & Gemology, 2008, 44(3): 214-226.
|
[15] |
Fridrichová J, Bacƪík P, Ertl A, et al. Jahn-Teller distortion of Mn3+ -occupied octahedra in red beryl from Utah indicated by optical spectroscopy[J]. Journal of Molecular Structure, 2018(1 152): 79-86.
|
[16] |
Taran M N, Dyar M D, Khomenko V M. Spectroscopic study of synthetic hydrothermal Fe3+-bearing beryl[J]. Physics & Chemistry of Minerals, 2017(2): 1-8.
|
[17] |
Yu X Y, Hu D Y, Niu X W, et al. Infrared spectroscopic characteristics and ionic occupation in crystalline tunneling system of yellow beryl[J]. The Minerals, Metals & Materials Society, 2017, 69(4): 704-712. doi: 10.1007/s11837-017-2266-1
|
[1] | WANG Lan, DENG Lei, YANG Xue, HE Liyan, ZHU Chuye. Ultraviolet Fluorescence and Infrared Spectrum Characteristic of "Traceless Repair" Treated Feicui (Jadeite Jade)[J]. Journal of Gems & Gemmology, 2024, 26(2): 43-47. DOI: 10.15964/j.cnki.027jgg.2024.02.005 |
[2] | Rui ZUO, Hui DAI, Wenqing HUANG, Lu YU, Wanghui DENG. UV-Vis Spectral Characteristic and Colour Characterization of Turquoise from Tongling, Anhui Province[J]. Journal of Gems & Gemmology, 2020, 22(1): 13-19. DOI: 10.15964/j.cnki.027jgg.2020.01.002 |
[3] | LIU Hao, Shen Andy Hsitien. UV-Vis, Raman and Infrared Spectral Characteristics of Emerald from Russia[J]. Journal of Gems & Gemmology, 2019, 21(S1): 4-5. DOI: 10.15964/j.cnki.027jgg.2019.S1.002 |
[4] | YANG Ruzeng, YANG Song. Application of Infrared Spectroscopy and Raman Spectroscopy on Identification of Heat-treated Aquamarine[J]. Journal of Gems & Gemmology, 2014, 16(1): 46-49. |
[5] | WU Wenjie, WANG Yamei. Study on Raman Spectrum Characteristics of Amber[J]. Journal of Gems & Gemmology, 2014, 16(1): 40-45. |
[6] | LI Jian-jun, LIU Xiao-wei, HE Wen-jun, CHENG You-fa, LIU Hua-feng, LIU Hai-bin. Infrared Spectral Proof of An Out-of-phase Material on Surface Cavity of Almandine[J]. Journal of Gems & Gemmology, 2011, 13(3): 38-41. |
[7] | XIANG Xian-biao, ZHANG Yi-xiang, LAI Wen-bo. An Analysis of Infrared Spectra of Red-yellow Jadeites by Heat Treatment[J]. Journal of Gems & Gemmology, 2011, 13(2): 31-37. |
[8] | YUAN Xin-qiang, QI Li-jian, ZHENG Nan. Principle and Technique of Mirror-Reflection Infrared Spectrum[J]. Journal of Gems & Gemmology, 2005, 7(4): 17-20. |
[9] | YUAN Xin-qiang, QI Li-jian, DU Guang-peng, CHEN Xiao-yan. UV-VIS-NIR Spectrum of Jadeite Jade from Burma[J]. Journal of Gems & Gemmology, 2003, 5(4): 11-16. |
[10] | Zhou Quande, Wang Yiqun. STUDY ON FOURIER INFRARED SPECTURUM OF RUBY[J]. Journal of Gems & Gemmology, 2000, 2(1): 23-26. |