FENG Junyan, CHEN Meihua. Gemmological Characteristic and Chemical Composition of Ruby from Guinea, Africa[J]. Journal of Gems & Gemmology, 2019, 21(3): 26-36. DOI: 10.15964/j.cnki.027jgg.2019.03.004
Citation: FENG Junyan, CHEN Meihua. Gemmological Characteristic and Chemical Composition of Ruby from Guinea, Africa[J]. Journal of Gems & Gemmology, 2019, 21(3): 26-36. DOI: 10.15964/j.cnki.027jgg.2019.03.004

Gemmological Characteristic and Chemical Composition of Ruby from Guinea, Africa

More Information
  • Received Date: November 15, 2018
  • The rubies originating from Guinea, Africa were studied. The gemmological characteristics of the rubies were tested by conventional gemmological instruments and the composition and spectra characteristics of the ruby sample from Guinea were analysed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. Besides, composition characteristics of the ruby sample from Guinea were discussed and compared with those from other origins in Africa. The results indicated that the rubies from Guinea with corrosion mantle often show purple or brown hue. A great quantity of inclusions and fissilities cause low transparency of ruby from Guinea. On the basis of colour, ruby samples can be divided into two series: Purplish red and orange. With the colour from pink to dark purple, the content of Cr, Fe and the ratio of Cr/Fe show an obvious difference, which are lower than those of high quality rubies. Moreover, the content of Fe in ruby from Guinea is about 0.05%—0.15%, which can be distinguished from ruby in Kenya (< 0.001 5%), Madagascar (0.15%—0.28%) and Mozambique ( > 0.28%) but overlaps with ruby from Tanzania (0.030%—0.156%). Considering the UV-Vis absorption spectra, the purple-red series have obvious red shift phenomenon with the colour from shallow to deep, while the orange series exhibit high absorption intensity in the purple region and low absorption intensity in the green region. For the appearance of 3 310, 3 076 cm-1 in FTIR spectra, it must be noted that only the dark red-purple samples that contain relatively high Ti would show the peak. Therefore, the 3 310 cm-1 peak is assigned for Ti-OH. In addition, apatite, diaspora and rutile as the main crystal inclusions have been determined by Raman spectra.
  • [1]
    Hughes R W. Ruby & sapphire: A gemologist's guide[M]. Colorado: RWH Pub, 2017.
    [2]
    张蓓莉. 系统宝石学[M]. 2版. 北京: 地质出版社, 2006.
    [3]
    Pardieu V, Thanachakaphad J. Rubies reportedly from the Niassa Region of Mozambique[EB/OL]. [2009-04-16]. www. gia. edu/doc/Niassa-Mozambique Ruby. pdf.
    [4]
    Sunziyin E S G. The role of silicon in the color of gem corundum[J]. Gems & Gemology, 2017, 51(1): 42-47. http://d.wanfangdata.com.cn/periodical/cdf55e3077b2bf95ea9e41ea1ad73770
    [5]
    Pereti [EB/OL]. [2015-04-30]. http://gemresearch.ch/pigeons-blood-royal-blue.
    [6]
    Chulapakorn T, Intarasiri S, Bootkul D, et al. Identification of deposit types of natural corundum by PIXE[J]. Nuclear Inst & Methods in Physics Research B, 2014(331): 108-112. http://www.sciencedirect.com/science/article/pii/S0168583X14001177
    [7]
    Simonet C, Fritsch E, Lasnier B. A classification of gem corundum deposits aimed towards gem exploration[J]. Ore Geology Reviews, 2008, 34(1): 127-133. http://www.sciencedirect.com/science/article/pii/S0169136808000280
    [8]
    Pornwilard M M, Hansawek R, Shiowatana J, et al. Geographical origin classification of gem corundum using elemental fingerprint analysis by laser ablation inductively coupled plasma mass spectrometry[J]. International Journal of Mass Spectrometry, 2011, 306(1): 57-62. doi: 10.1016/j.ijms.2011.06.010
    [9]
    Pardieu V, Thanachakaphad J. Rubies reportedly from Mozambique[J]. Gems & Gemology, 2012, 48(2): 149-150.
    [10]
    Pardieu V, Sangsawong S, Muyal J, et al. Rubies from the Montepuez area, Mozambique[R]. USA: GIA, 2013.
    [11]
    业冬. 云南元江红宝石的矿物宝石学特征及热处理研究[D]. 昆明: 昆明理工大学, 2007.
    [12]
    Wathanaku P, Phlayraham A, Monarumit N, et al. Low-temperature heating of ruby samples from major sources[A]. 北京: 中国珠宝首饰学术交流会, 2015.
    [13]
    Beran A, Rossman G R. OH in naturally occurring corundum[J]. European Journal of Mineralogy, 2006, 18(4): 441-447. doi: 10.1127/0935-1221/2006/0018-0441
    [14]
    范建良, 郭守国, 刘学良, 等. 拉曼光谱在红宝石检测中的应用研究[J]. 应用激光, 2008, 28(2): 150-154. doi: 10.3969/j.issn.1000-372X.2008.02.016
    [15]
    Sinha J K, Mishra P K. Spectroscopic and microstructural studies of ruby gemstones of Sinapalli, Odisha[J]. Journal of the Geological Society of India, 2015, 86(6): 657-662. doi: 10.1007/s12594-015-0357-6
    [16]
    何谋春, 朱选民, 洪斌. 云南元江红宝石中包裹体的拉曼光谱特征[J]. 宝石和宝石学杂志, 2001, 3(4): 25-27. doi: 10.3969/j.issn.1008-214X.2001.04.007
    [17]
    韩孝朕, 吴晓, 康燕, 等. 拉曼光谱在蓝宝石包体研究中的应用[J]. 激光与光电子学进展, 2016(3): 257-261. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201603037.htm
  • Related Articles

    [1]ZHENG Yimeng, PEI Jingcheng, LAI Xiaojing. Gemmological and Spectral Characteristics of Ruby from Winza, Tanzania[J]. Journal of Gems & Gemmology, 2024, 26(4): 1-11. DOI: 10.15964/j.cnki.027jgg.2024.04.001
    [2]NING Peiying, TANG Na, MENG Caizhen, ZHANG Tianyang, LI Huihuang. Spectral Characteristic and Chemical Composition of Ruby from Southwest Kenya[J]. Journal of Gems & Gemmology, 2023, 25(6): 7-16. DOI: 10.15964/j.cnki.027jgg.2023.06.001
    [3]CHEN Jiahui, LIU Junfeng, CAI Yuanyang, WU Di, QIN Ming. Gemmological Characteristic of A Certain Type of Beryllium-Diffused Ruby[J]. Journal of Gems & Gemmology, 2023, 25(5): 96-105. DOI: 10.15964/j.cnki.027jgg.2023.05.010
    [4]LI Shiyi, LIU Yimiao, LI Yan, JIANG Jie. Gemmological and Spectral Characteristics of Ruby from Huameuang, Houaphanh Province, Laos[J]. Journal of Gems & Gemmology, 2023, 25(5): 83-95. DOI: 10.15964/j.cnki.027jgg.2023.05.009
    [5]YU Li, PAN Shaokui. Gemmological Characteristic of Brown Sapphire from Guinea, Africa[J]. Journal of Gems & Gemmology, 2022, 24(3): 10-19. DOI: 10.15964/j.cnki.027jgg.2022.03.002
    [6]ZHANG Haikun, LIU Cuihong, SONG Qiurong, Andy Hsitien Shen. Gemmological and Chemical Characteristics of Spessartine from Zambia[J]. Journal of Gems & Gemmology, 2021, 23(2): 1-10. DOI: 10.15964/j.cnki.027jgg.2021.02.001
    [7]DAI Sihui, SHEN Keya. Gemmological Characteristic of Nanhong Agate from Liangshan in Sichuan Province, China and Africa[J]. Journal of Gems & Gemmology, 2016, 18(4): 22-27.
    [8]REN Qianqian, CHEN Meihua, LI Xinyu, JIANG Jiali. Analysis on Chemical Composition and Heat Treatment Result of Light Yellow Scapolite[J]. Journal of Gems & Gemmology, 2016, 18(2): 34-39.
    [9]LIU Jin-hua, BAI Feng, LUO Shu-qiong,Yu Shui-lian, WU Zhi-yuan, . Study on Gemmological Characteristics and Chemical Composition of Zircon from Changle, Shandong Province[J]. Journal of Gems & Gemmology, 2012, 14(1): 32-37.
    [10]LIAO Ren-qing, ZHU Qin-wen. Chemical Composition Analysis of Nephrites from Different Localities in China[J]. Journal of Gems & Gemmology, 2005, 7(1): 25-30.

Catalog

    Article Metrics

    Article views (666) PDF downloads (43) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return