马达加斯加含定向包裹体磷灰石的宝石矿物学特征

李星彤, 徐畅, 郑金宇, 沈洪涛, 沈锡田, 张倩

李星彤, 徐畅, 郑金宇, 沈洪涛, 沈锡田, 张倩. 马达加斯加含定向包裹体磷灰石的宝石矿物学特征[J]. 宝石和宝石学杂志(中英文), 2024, 26(S1): 104-107.
引用本文: 李星彤, 徐畅, 郑金宇, 沈洪涛, 沈锡田, 张倩. 马达加斯加含定向包裹体磷灰石的宝石矿物学特征[J]. 宝石和宝石学杂志(中英文), 2024, 26(S1): 104-107.
LI Xingtong, XU Chang, ZHENG Jinyu, SHEN Hongtao, Shen Andy Hsitien, ZHANG Qian. Gemmological and Mineralogical Characteristics of Apatite from Madagascar with Directional Inclusions[J]. Journal of Gems & Gemmology, 2024, 26(S1): 104-107.
Citation: LI Xingtong, XU Chang, ZHENG Jinyu, SHEN Hongtao, Shen Andy Hsitien, ZHANG Qian. Gemmological and Mineralogical Characteristics of Apatite from Madagascar with Directional Inclusions[J]. Journal of Gems & Gemmology, 2024, 26(S1): 104-107.

马达加斯加含定向包裹体磷灰石的宝石矿物学特征

详细信息
    作者简介:

    李星彤(2000-),女,硕士研究生,主要从事宝石学方面的研究。E-mail:xingtong.li@cug.edu.cn

    通讯作者:

    张倩(1986-),女,讲师,主要从事宝石学及矿物学方面的研究工作。E-mail:qianzhang@cug.edu.cn

Gemmological and Mineralogical Characteristics of Apatite from Madagascar with Directional Inclusions

  • 摘要:

    含定向包裹体的晶体经定向切磨后,可呈现包括星光效应与猫眼效应在内的特殊光学效应。因其美丽的外观,这种宝石在市场上受到消费者的喜爱。磷灰石内部常见丰富的定向包裹体,切磨后可以呈现猫眼效应。猫眼磷灰石很常见,在一些非洲与亚洲国家均有产出。但与刚玉、石榴石与金绿宝石等常见宝石相比,关于磷灰石内部定向包裹体的组分、成因的系统性研究较少。因此,本文通过显微镜、拉曼光谱仪、扫描电子显微镜、X射线能谱仪、磁性测试对一种产自马达加斯加的含定向排列包裹体的磷灰石样品进行了较为系统的测试分析。显微观察表明,磷灰石样品内部含有大量具金属光泽的针状包裹体,平行主晶c轴生长,切磨成弧面型宝石后可产生猫眼效应。EDS结果表明,包裹体出露区域富含Fe与O元素,指示包裹体为一种铁氧化物。拉曼光谱显示包裹体具有位于662 cm-1处的弱拉曼峰,可归属为磁铁矿的A1g振动峰。磁滞回线测试进一步表明包裹体为亚铁磁性物质,表明针状包裹体的成分为磁铁矿。磷灰石内部的定向磁铁矿包裹体并不常见,该研究结果对磷灰石内含物研究领域提供了新的见解。

    Abstract:

    In this study, the apatites containing directional arrangement inclusions from Madagascar were investigated using microscope, Raman spectroscopy, scanning electron microscope (SEM), X-ray energy dispersive spectroscopy (EDS), and magnetic test. Microscopic observation results show that there are abundant needle-like inclusions with metallic luster, which are parallel to c-axis of the apatite crystal. These inclusions could produce the cat's eye effect of apatite under the light. EDS results reveal that Fe and O elements are rich in the exposed region of inclusion, suggesting that it is a type of iron oxide. Raman spectroscopy displays a weak peak at 662 cm-1, which can be attributed to the A1g vibration mode of magnetite. The hysteresis loop test confirms that the inclusions are ferromagnetic substances, indicating that the needle-like inclusions are magnetite.

  • 宝石的特殊光学效应可以增加其价值,在宝石学研究中具有重要意义。在特殊光学效应中,星光效应与猫眼效应最为常见[1]。具有星光和猫眼效应的宝石种类丰富,如斜方晶系的金绿宝石,三方晶系的刚玉与石英,六方晶系的绿柱石,等轴晶系的石榴石等[2-5]。具有猫眼效应的磷灰石很常见,如马达加斯加、坦桑尼亚、肯尼亚、纳米比亚等地区是这种宝石的重要产地[6-7]。此外,印度、缅甸、斯里兰卡也曾报道过磷灰石猫眼的产出[8]。磷灰石的猫眼效应通常由其内部定向包裹体导致,前人推测可能为针铁矿等含铁矿物、平行生长管道或纤维状白色矿物[6, 9-11]。近期,马达加斯加发现了一种含定向包裹体的磷灰石,这种磷灰石在此前未被报道过。本研究通过拉曼光谱仪、扫描电子显微镜、X射线能谱仪、磁性测试等测试方法对这种磷灰石样品进行内部特征观察与成分分析。

    本研究磷灰石样品产自马达加斯加,原石晶体为黄绿色,具玻璃光泽;外表磨损严重,肉眼可见大量平行排列的深色包裹体,整体透明度较低(图 1a)。对原石定向切磨后可产生猫眼效应(图 1b)。包裹体形态观察在中国地质大学(武汉)珠宝学院的ZEISS Axio Imager 2 Pol显微镜上完成;拉曼光谱测试在中国地质大学(武汉)珠宝学院使用JASCO NSR-7500激光拉曼光谱仪完成;背散射电子相与EDS测试在中国地质大学(武汉)地球科学学院搭载Oxford Instrument能谱仪与背散射电子衍射系统的Tescan Mira-3扫描电镜上完成;样品的磁滞回线通过Quantum Design PPMS-9磁力计测得。

    图  1  产自马达加斯加的磷灰石样品: (a)原石样品;(b)弧面型样品在光照下产生猫眼效应
    Figure  1.  Apatite samples from Madagascar: (a) rough samples; (b) cabochon sample with cat eye's effect under parallel light

    选取其中一颗原石样品平行c轴制成薄片。在偏光显微镜的高倍镜下,深棕色包裹体为细长的针状且平行分布,整体延伸方向平行于磷灰石c轴(图 2a);包裹体的长度约5~100 μm,宽度约1~3 μm;此外,磷灰石内还含有丰富的气液二相包裹体(图 2b),它们大多分布在晶体内的同一平面并平行磷灰石c轴延长。许多气液二相包裹体具有“颈缩”现象,表明晶体经历了溶解-重结晶过程[12]

    图  2  磷灰石样品的显微特征: (a)平行磷灰石c轴的深色针状包裹体;(b)磷灰石内丰富的气液二相包裹体
    Figure  2.  Microscopic features of apatite samples: (a) dark needle-like inclusions parallel to the c-axis of apatite; (b) abundant gas-liquid two-phase inclusions inside the apatite

    通过EDS面扫描测试分析包裹体的元素分布,结果显示包裹体的出露区域富含Fe与O元素(图 3),推测其为一种铁氧化物。

    图  3  包裹体出露区域的背散射电子相及元素分布图
    Figure  3.  BSE images and element distribution maps of the inclusion exposed region

    在磷灰石的振动模式中,与[PO4]四面体相关的拉曼位移分为四种:(1)由O-P-O对称伸缩振动ν1产生的拉曼位移位于962~965 cm-1;(2)由O-P-O弯曲振动ν2产生的拉曼位移位于419~431 cm-1;(3)由O-P-O非对称伸缩振动ν3产生的拉曼位移位于1 040~1 049 cm-1;(4) 由O-P-O非对称弯曲振动ν4产生的拉曼位移位于575~ 593 cm-1[13]。磷灰石基底与定向包裹体出露位置的拉曼光谱(图 4)显示,最强的拉曼峰位于964 cm-1,为[PO4]的ν1振动所致;445 cm-1处的拉曼峰为[PO4]的ν2振动所致;1 033、1 059 cm-1处的弱拉曼峰归因为[PO4]的ν3振动所致;583、610 cm-1处的拉曼峰均为[PO4]的ν4振动所致;位于1 162 cm-1的拉曼峰不属于[PO4]四面体,推测是由取代[PO4]位置的[SO4]的ν3振动产生[14]

    图  4  磷灰石基底与包裹体出露区域的拉曼光谱
    Figure  4.  Raman spectra of apatite base and inclusion exposed region

    在包裹体出露区域的拉曼光谱中出现了一个位于662 cm-1的弱振动峰。通过与RRUFF数据库中的标准样品(R080025)对比可知,该峰为磁铁矿的A1g振动峰。磁铁矿主要有位于662、535、297 cm-1处的三个拉曼峰[15],经多次测试仍未见另外两个拉曼峰,可能由于样品本身尺寸太小,测试信号强度较低所导致。

    不同物质的磁性类型由其内部磁矩和电子自旋排列决定,可以反映在磁滞回线上[16]。磷灰石与铁氧化物包裹体混合物所获得的磁滞回线表明,样品具有磁滞现象(图 5)。在高达1 500 Oe的外部磁场中,磁滞回线快速闭合并达到饱和。磁滞回线的形状表明,磷灰石中铁氧化物是具有高矫顽力的铁磁性物质,低矫顽力物质含量较低。结合X射线能谱与拉曼光谱测试结果,推测磷灰石内的针状包裹体为磁铁矿(Fe3O4)。

    图  5  磷灰石和包裹体混合物的磁滞回线
    Figure  5.  The hysteresis loop of the mixture of apatite and inclusions

    (1) 显微观察表明,马达加斯加磷灰石内部含有大量的针状包裹体与拉长的气液二相包裹体,这些包裹体整体沿磷灰石c轴方向延伸,表明与主晶之间存在一定的晶体学取向关系。

    (2) X射线能谱测试结果表明,马达加斯加磷灰石内含物区域以铁、氧元素为主;拉曼光谱表明,包裹体具有磁铁矿的662 cm-1主峰;磁滞回线测试结果表明样品中的铁氧化物为铁磁性物质。综合以上结果,推断磷灰石中定向包裹体为磁铁矿。

    (3) 马达加斯加磷灰石内部丰富的、具“颈缩”现象的气液二相包裹体表明,磷灰石晶体形成后可能经历了流体辅助的溶解-重结晶作用。气液二相包裹体与针状磁铁矿包裹体间具有相似的取向,推测磁铁矿包裹体的形成过程中也有流体参与。但这种流体作用是否与针状磁铁矿包裹体的形成直接相关还有待进一步验证。

  • 图  1   产自马达加斯加的磷灰石样品: (a)原石样品;(b)弧面型样品在光照下产生猫眼效应

    Figure  1.   Apatite samples from Madagascar: (a) rough samples; (b) cabochon sample with cat eye's effect under parallel light

    图  2   磷灰石样品的显微特征: (a)平行磷灰石c轴的深色针状包裹体;(b)磷灰石内丰富的气液二相包裹体

    Figure  2.   Microscopic features of apatite samples: (a) dark needle-like inclusions parallel to the c-axis of apatite; (b) abundant gas-liquid two-phase inclusions inside the apatite

    图  3   包裹体出露区域的背散射电子相及元素分布图

    Figure  3.   BSE images and element distribution maps of the inclusion exposed region

    图  4   磷灰石基底与包裹体出露区域的拉曼光谱

    Figure  4.   Raman spectra of apatite base and inclusion exposed region

    图  5   磷灰石和包裹体混合物的磁滞回线

    Figure  5.   The hysteresis loop of the mixture of apatite and inclusions

  • [1]

    Wüthrich A, Weibel M. Optical theory of asterism[J]. Physics and Chemistry of Minerals, 1981, 7(1): 53-4. doi: 10.1007/BF00308202

    [2]

    Yu J, He X, Lu Z. Cause analysis of chatoyancy of sapphires from Shandong, China[J]. RSC Advances, 2019, 9(42): 24 420-24 427.

    [3]

    Schmetzer K, Bernhardt H-J, Gilg H A. Characterization of oriented inclusions in cat's-eye, star and other chrysoberyls[J]. Journal of Gemmology, 2016, 35(1): 28-54. doi: 10.15506/JoG.2016.35.1.28

    [4]

    Schmetzer D, Kiefert D, Hänni P. Asterism in beryl, aquamarine and emerald—An update[J]. Journal of Gemmology, 2004, 29(2): 65-71. doi: 10.15506/JoG.2004.29.2.65

    [5]

    Schmetzer K, Bernhardt H-J, Kiefert L. Star garnets and star garnet cat's-eyes from Ambatondrazaka, Madagascar[J]. Journal of Gemmology, 2002, 28(1): 13-24. doi: 10.15506/JoG.2002.28.1.13

    [6]

    Barot N, Graziani G, Gübelin E, et al. Cat's-eye and asteriated gemstones from East Africa[J]. Journal of Gemmology, 1995, 24(8): 569-580. doi: 10.15506/JoG.1995.24.8.569

    [7]

    Johnson C. Cat's-eye apatite from Namibia[J]. Journal of Gemmology, 2014(34): 191.

    [8]

    Mauthner M, Ottaway T. Gem apatite localities[J]. Rocks & Minerals, 2015, 90(3): 260-269.

    [9]

    Kammerling R, Koivula J. Greenish-blue cat's-eye apatite[J]. Gems & Gemology, 1990, 26(3): 230.

    [10]

    Rakovan J, Laurs B M. Large cat's-eye apatite from Madagascar[J]. Journal of Gemmology, 2016, 35(3): 186-189.

    [11]

    Kammerling R, Koivula J, Johnson M, et al. Cat's-eye apatites from Madagascar[J]. Gems & Gemology, 1995(31): 205-206.

    [12]

    Roedder E. Fluid inclusions[M]. Boston: De Gruyter, 1984.

    [13]

    O'shea D, Bartlett M, Young R. Compositional analysis of apatites with laser-Raman spectroscopy: (OH, F, Cl) apatites[J]. Archives of Oral Biology, 1974, 19(11): 995-1 006. doi: 10.1016/0003-9969(74)90086-7

    [14]

    Taddei P, Tinti A, Gandolfi M G, et al. Vibrational study on the bioactivity of Portland cement-based materials for endodontic use[J]. Journal of Molecular Structure, 2009(924): 548-554.

    [15]

    Shebanova O N, Lazor P. Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum[J]. Journal of Solid State Chemistry, 2003, 174(2): 424-430. doi: 10.1016/S0022-4596(03)00294-9

    [16]

    Cornell R M, Schwertmann U. The iron oxides: structure, properties, reactions, occurrences, and uses[M]. Weinheim: Wiley-vch, 2003.

图(5)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  18
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-14
  • 刊出日期:  2024-10-30

目录

/

返回文章
返回