寿山石新地方标准解析

汤德平, 吴立旺, 郑宗坦, 陈剑玲

汤德平, 吴立旺, 郑宗坦, 陈剑玲. 寿山石新地方标准解析[J]. 宝石和宝石学杂志, 2012, 14(3): 48-52.
引用本文: 汤德平, 吴立旺, 郑宗坦, 陈剑玲. 寿山石新地方标准解析[J]. 宝石和宝石学杂志, 2012, 14(3): 48-52.
TANG De-ping, WU Li-wang, ZHENG Zong-tan, CHEN Jian-ling. An Explanation for the Provincial Standard of Larderite[J]. Journal of Gems & Gemmology, 2012, 14(3): 48-52.
Citation: TANG De-ping, WU Li-wang, ZHENG Zong-tan, CHEN Jian-ling. An Explanation for the Provincial Standard of Larderite[J]. Journal of Gems & Gemmology, 2012, 14(3): 48-52.

寿山石新地方标准解析

详细信息
    作者简介:

    汤德平(1954-),男,博士,教授,主要从事矿物材料及宝石学的研究。

  • 中图分类号: TS93;P619.28

An Explanation for the Provincial Standard of Larderite

  • 摘要: 福建省质量技术监督局近日发布了福建省地方标准——地理标志产品寿山石(DB35/T 419—2012)。说明了该标准的起草和主要内容,并详细讨论了新标准中采用的寿山石分类方法,主要特征和鉴别方法。新标准中将寿山石分为田黄石类、高山石类、芙蓉石类和汶洋石类。其中,高山石类以高岭石族矿物为主要矿物,芙蓉石类以叶蜡石为主,汶洋石类以伊利石为主,田黄石类则是寿山石经过搬运埋藏的产物。相对密度和近红外光谱分析可以用来方便、快速地区分不同类型的寿山石。
    Abstract: The Fujian provincial bureau of quality and technical supervision recently published aprovincial standard of the product of geographical indication-Larderite(DB35/T 419-2012).This paper explains the drafting process and its key contents and it also provides detailed explanations on features of larderite and on classification and identification methods of larderite adopted in this new standard.The larderite is divided into four groups:Tianhuan stone group,Gaoshan stone group,Furong stone group and Wenyang stone group.Gaoshan stone group is composed of kaolinite minerals,Furong stone group is composed of pyrophyllite and Wenyang stone group is composed of illite.Tianhuang stone group is the product of larderite being transported and buried.These groups can be identified by their relative densities and near-infrared spectra with ease.
  • 宝石的特殊光学效应可以增加其价值,在宝石学研究中具有重要意义。在特殊光学效应中,星光效应与猫眼效应最为常见[1]。具有星光和猫眼效应的宝石种类丰富,如斜方晶系的金绿宝石,三方晶系的刚玉与石英,六方晶系的绿柱石,等轴晶系的石榴石等[2-5]。具有猫眼效应的磷灰石很常见,如马达加斯加、坦桑尼亚、肯尼亚、纳米比亚等地区是这种宝石的重要产地[6-7]。此外,印度、缅甸、斯里兰卡也曾报道过磷灰石猫眼的产出[8]。磷灰石的猫眼效应通常由其内部定向包裹体导致,前人推测可能为针铁矿等含铁矿物、平行生长管道或纤维状白色矿物[6, 9-11]。近期,马达加斯加发现了一种含定向包裹体的磷灰石,这种磷灰石在此前未被报道过。本研究通过拉曼光谱仪、扫描电子显微镜、X射线能谱仪、磁性测试等测试方法对这种磷灰石样品进行内部特征观察与成分分析。

    本研究磷灰石样品产自马达加斯加,原石晶体为黄绿色,具玻璃光泽;外表磨损严重,肉眼可见大量平行排列的深色包裹体,整体透明度较低(图 1a)。对原石定向切磨后可产生猫眼效应(图 1b)。包裹体形态观察在中国地质大学(武汉)珠宝学院的ZEISS Axio Imager 2 Pol显微镜上完成;拉曼光谱测试在中国地质大学(武汉)珠宝学院使用JASCO NSR-7500激光拉曼光谱仪完成;背散射电子相与EDS测试在中国地质大学(武汉)地球科学学院搭载Oxford Instrument能谱仪与背散射电子衍射系统的Tescan Mira-3扫描电镜上完成;样品的磁滞回线通过Quantum Design PPMS-9磁力计测得。

    图  1  产自马达加斯加的磷灰石样品: (a)原石样品;(b)弧面型样品在光照下产生猫眼效应
    Figure  1.  Apatite samples from Madagascar: (a) rough samples; (b) cabochon sample with cat eye's effect under parallel light

    选取其中一颗原石样品平行c轴制成薄片。在偏光显微镜的高倍镜下,深棕色包裹体为细长的针状且平行分布,整体延伸方向平行于磷灰石c轴(图 2a);包裹体的长度约5~100 μm,宽度约1~3 μm;此外,磷灰石内还含有丰富的气液二相包裹体(图 2b),它们大多分布在晶体内的同一平面并平行磷灰石c轴延长。许多气液二相包裹体具有“颈缩”现象,表明晶体经历了溶解-重结晶过程[12]

    图  2  磷灰石样品的显微特征: (a)平行磷灰石c轴的深色针状包裹体;(b)磷灰石内丰富的气液二相包裹体
    Figure  2.  Microscopic features of apatite samples: (a) dark needle-like inclusions parallel to the c-axis of apatite; (b) abundant gas-liquid two-phase inclusions inside the apatite

    通过EDS面扫描测试分析包裹体的元素分布,结果显示包裹体的出露区域富含Fe与O元素(图 3),推测其为一种铁氧化物。

    图  3  包裹体出露区域的背散射电子相及元素分布图
    Figure  3.  BSE images and element distribution maps of the inclusion exposed region

    在磷灰石的振动模式中,与[PO4]四面体相关的拉曼位移分为四种:(1)由O-P-O对称伸缩振动ν1产生的拉曼位移位于962~965 cm-1;(2)由O-P-O弯曲振动ν2产生的拉曼位移位于419~431 cm-1;(3)由O-P-O非对称伸缩振动ν3产生的拉曼位移位于1 040~1 049 cm-1;(4) 由O-P-O非对称弯曲振动ν4产生的拉曼位移位于575~ 593 cm-1[13]。磷灰石基底与定向包裹体出露位置的拉曼光谱(图 4)显示,最强的拉曼峰位于964 cm-1,为[PO4]的ν1振动所致;445 cm-1处的拉曼峰为[PO4]的ν2振动所致;1 033、1 059 cm-1处的弱拉曼峰归因为[PO4]的ν3振动所致;583、610 cm-1处的拉曼峰均为[PO4]的ν4振动所致;位于1 162 cm-1的拉曼峰不属于[PO4]四面体,推测是由取代[PO4]位置的[SO4]的ν3振动产生[14]

    图  4  磷灰石基底与包裹体出露区域的拉曼光谱
    Figure  4.  Raman spectra of apatite base and inclusion exposed region

    在包裹体出露区域的拉曼光谱中出现了一个位于662 cm-1的弱振动峰。通过与RRUFF数据库中的标准样品(R080025)对比可知,该峰为磁铁矿的A1g振动峰。磁铁矿主要有位于662、535、297 cm-1处的三个拉曼峰[15],经多次测试仍未见另外两个拉曼峰,可能由于样品本身尺寸太小,测试信号强度较低所导致。

    不同物质的磁性类型由其内部磁矩和电子自旋排列决定,可以反映在磁滞回线上[16]。磷灰石与铁氧化物包裹体混合物所获得的磁滞回线表明,样品具有磁滞现象(图 5)。在高达1 500 Oe的外部磁场中,磁滞回线快速闭合并达到饱和。磁滞回线的形状表明,磷灰石中铁氧化物是具有高矫顽力的铁磁性物质,低矫顽力物质含量较低。结合X射线能谱与拉曼光谱测试结果,推测磷灰石内的针状包裹体为磁铁矿(Fe3O4)。

    图  5  磷灰石和包裹体混合物的磁滞回线
    Figure  5.  The hysteresis loop of the mixture of apatite and inclusions

    (1) 显微观察表明,马达加斯加磷灰石内部含有大量的针状包裹体与拉长的气液二相包裹体,这些包裹体整体沿磷灰石c轴方向延伸,表明与主晶之间存在一定的晶体学取向关系。

    (2) X射线能谱测试结果表明,马达加斯加磷灰石内含物区域以铁、氧元素为主;拉曼光谱表明,包裹体具有磁铁矿的662 cm-1主峰;磁滞回线测试结果表明样品中的铁氧化物为铁磁性物质。综合以上结果,推断磷灰石中定向包裹体为磁铁矿。

    (3) 马达加斯加磷灰石内部丰富的、具“颈缩”现象的气液二相包裹体表明,磷灰石晶体形成后可能经历了流体辅助的溶解-重结晶作用。气液二相包裹体与针状磁铁矿包裹体间具有相似的取向,推测磁铁矿包裹体的形成过程中也有流体参与。但这种流体作用是否与针状磁铁矿包裹体的形成直接相关还有待进一步验证。

  • [1] DB35/T 419—2012,地理标志产品寿山石[S].
    [2] 陈石.寿山石图鉴[M].香港八龙书屋,1991.
    [3] 高天钧,张智亮,刘志逊.寿山石成矿地质条件及找矿前景[J].福建地质,1997,16(3):110-131.
    [4] 武新逢,崔文元.寿山石的矿物学研究[J].岩石矿物学杂志,1999,18(2):186-191.
    [5] 汤德平,郑宗坦.寿山石的矿物组成与宝石学研究[J].宝石和宝石学杂志,1999,1(4):28-36.
    [6] 刘卫东,江国健,徐家跃,等.寿山石矿物组成及其分类的XRD研究[J].上海应用技术学院学报(自然科学版),2009,9(3):175-178.
    [7] 汤德平,姚春茂,解小建.一些寿山石新品种的宝石学研究[J].宝石和宝石学杂志,2005,7(4):1-6.
    [8] 汤颖莹,汤德平.寿山石透明度的研究[J].宝石和宝石学杂志,2008,10(1):9-14.
    [9] 李婷,陈涛.福建寿山高山石与坑头石的矿物学特征[J].岩石矿物学杂志,2010,29(4):414-420.
    [10] 高孔,狄敬如.巴林石、寿山石透明度研究[J].宝石和宝石学杂志,2010,12(13):26-33.
    [11] 孙海涛,吕淑红.BJKF-1型便携式近红外矿物分析仪在宝玉石鉴定中的应用[J].岩矿测试,2008,27(6):418-422.
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-18
  • 刊出日期:  2012-09-24

目录

/

返回文章
返回