Fe2O3@SiO2纳米颗粒掺杂比例对合成火欧泊颜色性质的影响

Effect of Fe2O3@SiO2 Nanoparticle Doping Ratio on the Colour of Synthetic Precious Fire Opal

  • 摘要: 宝石级欧泊具有彩虹般绚丽的变彩效应,是其微观尺度上尺寸均一的二氧化硅纳米颗粒有序堆积形成的三维周期结构造成1。欧泊的这一性质,使其成为天然光子晶体的经典案例。因此,合成欧泊不仅可以用作宝石材料,而且其在光子学、光电子学和传感器等领域也具有潜在的应用,越来越多的研究者对合成欧泊产生了兴趣2。在种类繁多的欧泊中,带有变彩效应的火欧泊因同时具有绚丽的结构色和黄-橙-红的体色而备受推崇。以往的一些研究认为分散于火欧泊内部的Fe2O3纳米颗粒是引起其体色的主要原因之一,随着Fe2O3纳米颗粒浓度增加,火欧泊体色逐渐加深3。此外,Fe2O3纳米颗粒的存在相当于在蛋白石结构中引入缺陷,其浓度增加会改变火欧泊的周期性介电结构,最终导致颜色变化。想要验证并进一步研究上述现象,合成一系列不同Fe2O3纳米颗粒掺杂比例的火欧泊进行表征是较理想的策略。Fe2O3纳米颗粒是一种着色能力强、应用范围广的红色无机颜料4。然而,有关通过掺杂Fe2O3纳米颗粒合成火欧泊的研究报道较少,这可能是由于Fe2O3纳米颗粒的性质不稳定所致。例如,裸露的Fe2O3纳米颗粒在其分散体系中容易团聚、在高温下可以被还原为Fe3O4并使颜色变为暗红色,环境污染或光照还会导致Fe2O3纳米颗粒颜色褪色等5。以上这些问题可以通过将Fe2O3纳米颗粒封装在SiO2外壳中来解决。这是由于SiO2外壳可以调节Fe2O3颗粒之间的距离并防止分散颗粒团聚,SiO2外壳良好的化学惰性还可以增强Fe2O3纳米颗粒内核的化学稳定性,进而确保合成火欧泊的颜色稳定性6。综上所述,为加深对变彩火欧泊颜色成因的认识以及为火欧泊合成技术提供新思路,本研究以Fe2O3内核和SiO2外壳构成的核壳结构纳米颗粒(Fe2O3@SiO2)为红色颜料,合成了一系列不同掺杂比例的火欧泊薄膜并对其进行表征。首先,采用溶胶-凝胶法制备SiO2、Fe2O3@SiO2纳米颗粒;然后,将不同体积分数的Fe2O3@SiO2纳米颗粒混合在分散良好且尺寸相近的SiO2纳米颗粒悬浮液中;最后,采用垂直沉积自组装法合成火欧泊薄膜。我们研究了相同厚度情况下不同Fe2O3@SiO2纳米粒子掺杂比例合成的火欧泊薄膜的纳米尺度结构和颜色演变,并与现有研究进行比较。结果表明,与掺杂裸Fe2O3颗粒的蛋白石薄膜相比,Fe2O3@SiO2掺杂火欧泊体色的饱和度和亮度都有所提高,这主要归功于Fe2O3@SiO2在欧泊薄膜中的分布更为均匀且引起的结构性缺陷更少。在结构色方面,暂未发现Fe2O3@SiO2的掺杂对结构色色相的影响,但掺杂比例对结构色强度存在影响。在厚度相同的情况下,结构色强度随着掺杂比例的增加而先下降后升高并最终超过纯SiO2欧泊薄膜的结构色强度。目前的实验研究表明,Fe2O3@SiO2纳米颗粒作为合成火欧泊的掺杂颜料可有效提升火欧颜色性质,本研究的下一阶段将结合数值模拟对Fe2O3@SiO2影响火欧泊结构色强度的物理机制进行探究,为Fe2O3@SiO2用作合成火欧泊的掺杂颜料提供理论支撑。

     

    Abstract: Precious opal displays iridescent play-of-colour which is due to the diffraction effects of visible light by the three-dimensional periodic ordering of uniformly sized silica nanoparticles1. These properties make precious opal a useful prototype for 3D photonic crystals. More and more researchers attempted to synthesize precious opal not just for gemmological application but for potential applications in photonics, optoelectronics, and sensors2.Among the wide variety of opal types, precious fire opal has captured people due to its simultaneous display of play-of-colour and red-orange-yellow body colour. Some previous studies believe that the dispersion of Fe2O3 nanoparticles in precious fire opal is one of the main causes of its body colour. The body colour would become darker when the concentration of Fe2O3 nanoparticles increases3. In addition, the presence of Fe2O3 nanoparticles is equivalent to introducing defects in the opal structure. The increasing concentration of Fe2O3 nanoparticles will change the periodic dielectric structure of precious fire opal and ultimately affect the play-of-colour. To study these phenomena quantitatively, the best strategy is to synthesize a series of fire opal with different Fe2O3 nanoparticle doping ratios.Fe2O3 nanoparticle is one kind of wildly used red inorganic pigments with strong tinting strength4. However, only a few studies have been reported on synthetic opal with doped Fe2O3 nanoparticles, maybe due to the unstable properties of bare Fe2O3 nanoparticles. Bare Fe2O3 nanoparticles are easy to agglomerate in its dispersed system. At high temperatures, bare Fe2O3 nanoparticles can be reduced to Fe3O4 and cause the colour to turn dark red. In addition, environmental pollution or light exposure can lead to colour fading5. These problems can be solved by encapsulating Fe2O3 nanoparticle in the SiO2 shell. The SiO2 shell can prevent the aggregation of dispersed particles, adjust the distance between assembled particles, enhance the chemical stability of Fe2O3 core particles, and keep the colour stability of synthetic precious fire opal6.The present work aims to deepen the understanding of the colour genesis of precious fire opal and to improve synthetic techniques. We used Fe2O3 core with SiO2 shell nanoparticles (Fe2O3@SiO2) as red pigments and synthesized a series of fire opal films. First, the Fe2O3@SiO2 nanoparticles were prepared by a sol-gel process. Then, Fe2O3@SiO2 nanoparticles with different volume fractions were mixed in a well-dispersed, similar-sized SiO2 nanoparticle suspension. Finally, the fire opal films were synthesized by the vertical deposition self-assembly method. The nanostructure and colour evolution of synthetic fire opal films with different Fe2O3@SiO2 nanoparticle doping ratios were studied and compared to the results of previous reports. It showed that the saturation and brightness of the body colour were enhanced compared to bare Fe2O3 particle-doped opal. This is mainly due to the more even distribution of Fe2O3@SiO2 nanoparticles and the doping of Fe2O3@SiO2 nanoparticles, which leads to fewer structural defects in synthetic fire opal. In terms of structural colour, no effect of Fe2O3@SiO2 doping on the hue of structural colour has been found. However, the doping ratio has an effect on the intensity of structural colour. When the thickness was the same, the structural color intensity decreased first and then increased with the increase of doping ratio, finally exceeding the structural colour intensity of opal films assembled with pure SiO2 nanoparticles. The present experimental work shows that Fe2O3@SiO2 nanoparticles can effectively improve the colour properties of synthetic fire opal as doped pigments. In the next stage of this study, the physical mechanism of Fe2O3@SiO2 affecting the structural colour intensity of fire opal will be investigated by numerical simulation to provide theoretical support for the application of Fe2O3@SiO2 nanoparticles in synthetic fire opal.

     

/

返回文章
返回