A Study on the Reinforcement and Protection of Water-Saturated Ivory Artifacts Unearthed from the Sanxingdui Site
-
摘要:
三星堆遗址是迄今为止中国西南地区发现的分布范围最广、延续时间最长、文化内涵最丰富的古蜀文化遗址。该遗址出土的大量、成批的古象牙及象牙器文物具有重要的历史文化价值和科学研究价值。由于出土的象牙文物含水率高、酥粉严重,同时常规骨质文物加固材料(如羟基磷灰石、碳酸钙、Paraloid B72)等渗透性差,导致其加固效果欠佳。为了更有效加固与保护酥粉饱水象牙文物,在认识三星堆遗址出土象牙组成结构和病害类型的基础上,合成制备绿色柔性长链硅氧烷材料对酥粉饱水象牙文物样品进行滴渗加固实验研究,并采用电子万能试验机、静态水接触角测试仪和扫描电子显微镜对加固前后象牙文物的力学性能、微形貌特征和表面水浸润性能进行分析。结果表明,制备的硅氧烷加固材料在饱水象牙文物样品内的渗透性能较好,能够有效填充其孔洞缺陷,防止象牙本体收缩坍塌;加固后象牙文物的力学性能和疏水性能显著提高,且不改变文物原有形貌,是一种适用于潮湿环境下酥粉较为严重的出土饱水象牙文物加固材料。
Abstract:Sanxingdui site is the ancient Shu cultural ruins with the widest distribution, longest duration and richest cultural connotation found so far in southwest China. The large number of ancient ivory artifacts unearthed at this site have important historical, cultural, and scientific research value. Due to the high moisture content and serious crisp powder problem of the unearthed ivory artifacts, the conventional reinforcement materials for bone artifacts such as hydroxyapatite, calcium carbonate and Paraloid B72 have poor permeability and unsatisfactory reinforcement effect. In order to effectively protect ivory artifacts, the green flexible long chain siloxane material was synthesized, and the reinforcement experimental research was carried out by drip infiltration on the basis of understanding the composition structure and disease types of ivory artifacts unearthed at Sanxingdui site. The mechanical properties, micro-morphology and surface water infiltration of reinforced ivory artifacts were studied by means of electronic universal testing machine, scanning electron microscope and static water contact angle tester.The results showed that the prepared siloxane materials had good permeability in the water-saturated ivory artifacts, thus effectively filling the hole defects and preventing the collapse of the body. The mechanical properties and hydrophobicity of the ivory reinforced by the siloxane materials were significantly improved, and the original appearance of the ivory artifacts was not changed. The prepared siloxane materials were suitable for the reinforcement protection of the ivory artifacts with severe crispy powder problem excavated in humid environment.
-
Keywords:
- ivory artifact /
- water saturation /
- siloxane /
- reinforcement protection /
- Sanxingdui site
-
-
图 1 三星堆K7、K8祭祀坑内象牙文物的埋藏情况[1]
Figure 1. Burial of ivory artifacts in K7 and K8 sacrificial pits at Sanxingdui site
表 1 三星堆遗址祭祀坑出土象牙文物样品的含水率
Table 1 Moisture content of ivory artifacts unearthed from sacrificial pits at Sanxingdui site
象牙碎片 m1/g m2/g M/% Mc/% 碎片1 1.051 2 0.658 2 37.39 36.64 碎片2 1.480 4 0.988 4 35.94 碎片3 0.785 5 0.498 2 36.58 表 2 经硅氧烷溶液加固前后饱水象牙样品的抗压强度
Table 2 Compressive strength of water-saturated ivory samples before and after reinforced with siloxane solution
样品号 抗压强度/MPa 压强增量
/%加固前 加固后 1 0.17 0.28 64.71 2 0.21 0.34 61.90 -
[1] 冉宏林, 雷雨, 赵昊, 等. 四川广汉市三星堆遗址祭祀区[J]. 考古, 2022(7): 15-33. Ran H L, Lei Y, Zhao H, et al. Sacrificial area of the Sanxingdui site in Guanghan city, Sichuan[J]. Archaeology, 2022(7): 15-33. (in Chinese)
[2] 段渝. 三星堆: 神权文明的内涵[J]. 中国文化研究, 2021(4): 119-130. Duan Y. Sanxingdui site: The connotation of a theocratic civilization[J]. Chinese Cultural Studies, 2021(4): 119-130. (in Chinese)
[3] 杨博. 以考古丰富古史: 三星堆遗址的启示与谜思[J]. 中国文化研究, 2022(2): 73-79. Yang B. Enriching ancient history with archaeology: Revelations and mysteries of Sanxingdui site[J]. Chinese Cultural Studies, 2022(2): 73-79. (in Chinese)
[4] 冉宏林. 三星堆遗址考古工作九十年[J]. 中华文化论坛, 2023(4): 112-120, 190-191. Ran H L. Ninety years of archaeological work at Sanxingdui site[J]. Chinese Culture Forum, 2023(4): 112-120, 190-191. (in Chinese)
[5] Liu Y S, Xu Q M, Li S F, et al. Novel formulated alumina-silica hybrid sol for the entire consolidation of waterlogged decayed ivory from Sanxingdui ruin site[J]. Heritage Science, 2024, 12(90): 1-11.
[6] 肖嶙, 王宁, 蒋璐蔓, 等. 三星堆出土象牙多层级结构及失水过程研究[J]. 文物保护与考古科学, 2024, 36(2): 1-12. Xiao L, Wang N, Jiang L M, et al. Study on the multilayered structure and water loss process of ivory excavated from Sanxingdui site[J]. Science of Conservation and Archaeology, 2024, 36(2): 1-12. (in Chinese)
[7] 陈显丹. 三星堆遗址一、二号祭祀坑发掘日记[J]. 四川文物, 2006(3): 85-90. Chen X D. Diary of the excavation of the first and second sacrificial pits of Sanxingdui site[J]. Sichuan Cultural Relics, 2006(3): 85-90. (in Chinese)
[8] 四川省文物考古研究院. 三星堆祭祀坑[M]. 北京: 文物出版社, 1999: 150-154. Sichuan Institute of Cultural Relics and Archaeology. Sacrificial pits of Sanxingdui[M]. Beijing: Cultural Relics Press, 1999: 150-154. (in Chinese)
[9] 王惠珍. 文物保护学[M]. 北京: 文物出版社, 2009: 345. Wang H Z. Conservation of cultural relics[M]. Beijing: Cultural Relics Press, 2009: 345. (in Chinese)
[10] 张跃芬, 杨平, 余健, 等. 三星堆遗址祭祀区三号祭祀坑出土的象牙现场加固材料力学性能研究[J]. 中国测试, 2022, 48(202): 186-191. Zhang Y F, Yang P, Yu J, et al. Study on the mechanical properties of ivory field reinforcement materials excavated from No.3 sacrificial pit in the sacrificial area of Sanxingdui site[J]. China Test, 2022, 48(202): 186-191. (in Chinese)
[11] Reiche I, Vignaud C, Menu M. The crystallinity of ancient bone and dentine: New insights by transmission electron microscopy[J]. Archaeometry, 2002(44): 3.
[12] 徐海兵. 澄城县象牙化石病变机理及保护方法研究[D]. 西安: 西北大学, 2012. Xu H B. Research on lesion mechanism and protection method of fossilized ivory in Cheng cheng county[D]. Xi'an: Northwest University, 2012. (in Chinese)
[13] 邱泽皓. 杂化材料及其在古象牙文物保护中的应用研究[D]. 成都: 成都理工大学, 2006. Qiu Z H. Research on hybridized materials and their application in the protection of ancient ivory artifacts[D]. Chengdu: Chengdu University of Technology, 2006. (in Chinese)
[14] Howie F M. Development of treatments[M]. Oxford: Butterworths-Heinemann, 1995: 1-4.
[15] Oancea A V, Bodi G, Cernescu A, et al. Protective coatings for ceramic artefacts exposed to UV ageing[J]. npj Materials Degradation, 2023, 7(21): 1-13.
[16] He W B, Ou J F, Wang F J, et al. Transparent and superhydrophobic coating via one-step spraying for cultural relic protection against water and moisture[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023(662): 130949.
[17] Soytürk E E, Kartal S N, Terzi E, et al. Evaluation of wood treated with Paraloid B72 and boric acid: Thermal behavior, water absorption and mold resistance[J]. European Journal of Wood and Wood Products, 2023(81): 923-934.
[18] 聂焱. 金属表面有机硅烷杂化功能涂层的制备[D]. 青岛: 中国石油大学(华东), 2021. Nie Y. Preparation of organosilane hybridized functional coatings on metal surfaces[D]. Qingdao: China University of Petroleum (East China), 2021. (in Chinese)
[19] 杨超, 赵晨阳, 张继, 等. 纳米ZrO2的改性及其对硅烷防腐涂层的影响[J]. 上海涂料, 2024, 62(2): 1-6. Yang C, Zhao C Y, Zhang J, et al. Modification of nanometer ZrO2 and its effect on silane anticorrosion coating[J]. Shanghai Coatings, 2024, 62(2): 1-6. (in Chinese)
[20] 张磊, 徐枫, 杨红艳, 等. 绿色低碳硅烷改性聚醚防水涂料及其应用性能初探[J]. 中国建筑防水, 2023(4): 1-5. Zhang L, Xu F, Yang H Y, et al. Green low-carbon silane-modified polyether waterproof coating and its application performance[J]. China Building Waterproofing, 2023(4): 1-5. (in Chinese)
[21] 臧晓玲, 温变英. 高分子材料绿色制造与可持续发展[J]. 中国塑料, 2021, 35(8): 9-20. Zang X L, Wen C Y. Green manufacturing and sustainable development of polymer materials[J]. China Plastics, 2021, 35(8): 9-20. (in Chinese)
[22] Maija H, Mari H, Vippola M, et al. Effect of silane treatment parameters on the silane layer formation and bonding to thermoplastic urethane[J]. Progress in Organic Coatings, 2011, 72(4): 716-723.
[23] Tariq A, Asmat U, Fan H, et al. Recent progress in silane coupling agent with its emerging applications[J]. Journal of Polymers and the Environment, 2021, 29(5): 3427-3443.
[24] 班建峰, 陈盛, 张海良. 不同长度烷烃尾链对无柔性间隔基苯并菲侧链型液晶高分子相行为的影响[C]//中国化学会高分子学科委员会. 2015年全国高分子学术论文报告会论文摘要集, 2015: 463-463. Ban J F, Chen S, Zhang H L. Influence of different lengths of alkane tail chains on the phase behavior of benzophenanthrene side-chain-type liquid crystal polymers without flexible spacer groups[C]//Polymer Division, Chinese Chemical Society. Abstracts of 2015 National Polymer Symposium Report, 2015: 463-463. (in Chinese)
[25] Alexey V K, Sergei N S. Effect of water on silanization of silica by trimethoxysilanes[J]. Langmuir, 2002, 18(8): 3181-3184.
[26] 许彦, 何雪梅. 猛犸象牙成分与结构特征分析[C]//国土资源部珠宝玉石首饰管理中心. 珠宝与科技——2015中国珠宝首饰学术交流会论文集. 北京: 中国宝石, 2015: 153-157. Xu Y, He X M. Characterization of the composition and structure of mammoth ivory[C]//National Gems & Jewelry Testing Co. Ltd. Gemology & Technology: Proceedings of the 2015 China Jewelry Academic Exchange Conference. Beijing: China Gems, 2015: 153-157. (in Chinese)
[27] 邓建国, 朱雯莉, 龚敏, 等. 三星堆古象牙埋藏层土质分析[J]. 四川轻化工大学学报(自然科学版), 2023, 36(3): 20-27. Deng J G, Zhu W L, Gong M, et al. Soil quality analysis of the buried layer of ancient ivory in Sanxingdui[J]. Journal of Sichuan University of Light and Chemical Engineering (Natural Science Edition), 2023, 36(3): 20-27. (in Chinese)
[28] Li X G, Wang C, Zhang Y, et. al. Fourier-transformed infrared spectroscopy study of the ancient ivory tusks from the Sanxingdui site[J]. Frontiers in Earth Science, 2023(10): 2296-6463.
[29] 亓利剑, 周征宇, 廖冠琳, 等. 猛犸牙与象牙的微生长结构及红外吸收光谱的差异性[J]. 宝石和宝石学杂志(中英文), 2010, 12(3): 1-4. Qi L J, Zhou Z Y, Liao G L, et al. Differences in micro-growth structures and infrared absorption spectra of mammoth tusk and ivory[J]. Journal of Gems & Gemmology, 2010, 12(3): 1-4. (in Chinese)
[30] 李艺明. 水玻璃的改性研究及其在古象牙保护中的应用[D]. 成都: 成都理工大学, 2007. Li Y M. Research on the modification of water glass and its application in the protection of ancient ivory [D]. Chengdu: Chengdu University of Technology, 2007. (in Chinese)
[31] 陈家昌, 柴东朗, 周敬恩, 等. 金属配合物溶胶对金沙遗址出土潮湿古象牙加固的研究[J]. 材料导报, 2010(20): 62-65. Chen J C, Chai D L, Zhou J E, et al. Study on the reinforcement of wet ancient ivory excavated from Jinsha site by metal-compatible sols[J]. Materials Herald, 2010(20): 62-65. (in Chinese)