Categorization of Replacement Type and Precipitated Type Nephrites and Their Gemmological Characteristic and Formation Mechanism
-
摘要: 软玉的成因及其成玉机制是宝石学界非常关心的问题,不同学者曾探讨过侧重点不同的成因划分方案。但是,同一种大类成因的软玉是否具有不同的形成机制,这方面的研究很少。该问题涉及到关于软玉成玉地质过程的不同理解,对于古代玉器的溯源有重要影响。本文根据对不同玉矿的观察,提出每一种大类的软玉均可参照硬玉的划分思路,细分为两种不同的亚型:热液交代原岩形成的R型(Replacement Type)和热液流体沉淀形成的P型(Precipitated Type)。这两类亚型软玉的宝石学特点存在明显差异。其中,P型软玉还可细分为Pt和Ps两种,前者(Pp-pressure & Torsional stress)可能形成于压扭性作用为主的构造环境,以纤维交织结构为主;后者(Ps-stretching stress)则主要形成于伸展为主的构造环境,具有典型的梳状结构。根据野外及市场观察,高品质的玉料以Pt类型为主。一些多期成玉的玉矿,其部分玉料可能同时夹杂了R和P两种类型,存在复杂的过渡关系,但P型软玉形成时间一般晚于R型。笔者认为,对R型和P型软玉的成玉机制及其地球化学特征进行较深入研究,对于探索热液流体在软玉成矿演化过程及软玉成矿与某些重大地质过程的联系具有重要意义。Abstract: Nephrite's formation mechanisms are interesting issues for the gemmological research. Various researchers developed different categorization systems based on respective main causes of nephrite. However, the question whether nephrite within one main cause, can have different formation mechanism, is rarely studied. The answer to this question could directly change the understanding of how nephrite is formed in a geological process, and potentially have significant impact around how we can trace the ancient jades.Based on the observation in different nephrite jade mines, we believe that similar to how the jadeite categorized, we can divide each major type of nephrite into two subtypes, the R type (Replacement Type), formed by hydrothermal metamorphic replacement, and P type (Precipitated Type), formed by hydrothermal fluid precipitation, with distinct gemmological characteristics. P type can be further divided into 2 sub-types, Pt and Ps. Pt (Pp-Pressure & Torsional stress) is formed by construction environment with torsional stress, and mainly has fiber interweaving structure. Ps (Ps-stretching stress) is formed in construction environment with stretching stress, with typical comblike structure. Based on field study and market research, high quality jade is predominately Pt type.Within some mines with multiple periods of jade formation, some jades potentially simultaneously have both R and P types with complicated transitional relationship, but P type is usually formed later than R type.We believe the in-depth study of formation mechanism and geochemistry characteristics of R type and P type, is critical to explore how hydrothermal fluid links to some fundamental geological process in the formation and evolution process of nephrite mines.
-
Keywords:
- nephrite /
- categorization /
- gemmological characteristic /
- formation mechanism /
- geological process
-
关于软玉的成因类型,不同的学者有过侧重点不同的划分方案。
Leaming(1984)较早分为变质成因的变质岩型和交代成因蛇纹岩型两大类;邓燕华(1991)按软玉地质产状将软玉矿床分为花岗岩、花岗闪长岩与大理岩接触交代型、超基性岩交代型和变质岩型三种类型;唐延龄等(1994)认为软玉矿床可以分为蛇纹岩型(与超基性-基性的蛇纹岩有关)和镁质矽卡岩型(与中酸性岩浆岩有关);邹天人(1996)认为软玉(软玉岩和阳起石岩)属于热液交代岩,存在两种成因:一类是与中酸性岩有关的接触交代型软玉矿床,另一类是与超基性岩有关的接触交代型软玉矿床;Harlow & Sorensen(2005)认为软玉矿床可以划分为蛇纹岩、镁铁质、长英质火成岩或变质硬砂岩沿断裂接触变质形成的类型和长英质岩体带来的富硅流体接触交代白云岩形成的类型;刘飞和余晓艳(2009)根据成矿热液的来源,把软玉矿床分为岩浆热液型和变质热液型两大类型,岩浆热液型根据侵入体特征进一步分为中酸性岩型、基性岩型和超基性岩型,变质热液型根据围岩特点分为碳酸盐岩型和蛇纹岩型。上述的各类划分,主要是根据其成因差异或者软玉成玉过程有关的岩石类型进行分类。
同一种大类成因的软玉,是否具有不同的成因机制,相关的研究很少。这个问题直接涉及到对软玉成玉地质过程不同的理解,相关的研究对于古代玉器的溯源有重要影响。
根据笔者对新疆和田玉的观察,认为前人提出的每一种大类的软玉均可参照硬玉的划分方案,细分为两种不同的亚型:热液交代原岩形成的R型(Replacement Type)和热液流体沉淀形成的P型(Precipitated Type)。最近,根据对其它不同产地软玉地质产状及结构构造的进一步观察,笔者认为这种软玉成因机制的差异可能在不同软玉产区都广泛存在,两类软玉具有不同的宝石学特点。
R型:同一块料或器上颜色多样,粒度变化较大,颗粒感强,玉石的皮壳或风化特征多变。野外产状为似层状、透镜状及各种不规则形态;结构以片状变晶、板状变晶、纤维变晶结构为主,交代结构、交代残余结构发育,层状或块状构造;矿物组合复杂,不同矿区组合不同,透闪石矿物既可与石墨、透辉石、榍石/金红石、锆石、碳酸盐岩矿物、蛇纹石等原生早期矿物伴生,也可以和变质交代成因的某些新生矿物,如钙铝榴石、绿泥石、磁铁矿、滑石等共生或伴生,是接触变质热液交代作用产物。
P型:野外产状为各种不同形态的脉状、部分为透镜状或似层状;玉料质感、颜色较均一、细腻;结构以纤维交织、纤维变晶结构和毛毡状纤维交织结构为主;矿物组合较为单一,透闪石主要和流体及交代蚀变有关的矿物,如磷灰石、绿泥石、滑石等共生/伴生,是热液沿裂隙沉淀产物。P型软玉还可以细分Pt为和Ps两种,前者(Pt-Pressure & Torsional stress)可能形成于压扭性作用为主的构造环境,以纤维交织结构为主,而后者(Ps-stretching stress)则主要形成于伸展为主的构造环境,具有典型的梳状结构。根据野外及市场观察,高品质的玉料以Pt类型为主。
一些多期成玉的玉矿,部分玉料可能同时夹杂了R和P两种类型,存在复杂的过渡关系,但P型软玉形成一般晚于R型。
由于不同成矿环境,不同产地两种软玉亚型的外在表现、比例及地球化学特征也存在差异,区别两者,对于古玉溯源有明确的科学意义;同时,对R型和P型软玉成玉机制及其地球化学特征的深入研究,对于探索热液流体在软玉成矿演化过程及软玉成矿与某些重大地质过程的联系也具有重要意义。
-
[1] 唐延龄, 陈葆章, 蒋壬华. 中国和田玉[M]. 乌鲁木齐: 新疆人民出版社, 1994. [2] Harlow G E, Sorensen S S. Jade (nephrite and jadeitite) and serpentinite: Metasomatic connections[J]. International Geology Review, 2005(47): 113-146. http://www.onacademic.com/detail/journal_1000035952631610_b3b7.html
[3] Tsujimori T, Harlow G E. Petrogenetic relationships between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities[J]. European Journal of Mineralogy, 2012, 24(2): 371-390. doi: 10.1127/0935-1221/2012/0024-2193
[4] 刘飞, 余晓艳. 中国透闪石玉矿床类型及其矿物学特征[J]. 矿产与地质, 2009, 23(4): 375-380. doi: 10.3969/j.issn.1001-5663.2009.04.017 [5] Liu Y, Zhang R Q, Zhang Z Y, et al. Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite: Implications for the genesis of a magnesian skarn deposit[J]. Lithos, 2015(212-215): 128-144.
[6] 丘志力, 张跃峰, 李榴芬, 等. 新疆和田地区和田玉两种成玉机制探讨[J]. 吉林大学学报(地球科学版), 2015, 45(S): 15-13, 26-27. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201506004026.htm