XU Duo, ZHOU Zhengyu. Mineralogical and Spectral Characteristics of Turquoise and Its Common Imitations[J]. Journal of Gems & Gemmology, 2024, 26(S1): 13-15.
Citation: XU Duo, ZHOU Zhengyu. Mineralogical and Spectral Characteristics of Turquoise and Its Common Imitations[J]. Journal of Gems & Gemmology, 2024, 26(S1): 13-15.

Mineralogical and Spectral Characteristics of Turquoise and Its Common Imitations

More Information
  • Received Date: July 14, 2024
  • This article mainly used modern testing techniques such as conventional gemmological tests, infrared spectrometer, Raman spectrometer, ultraviolet visible spectrometer, and energy spectrum analysis to systematically study the mineralogical and spectra characteristics of the turquoise and its imitations purchased from mining areas, manufacturers, and trusted channels. We have come to the following conclusion. The density of natural turquoise is between 2.45-2.75 g/cm3, and the refractive index is between 1.61-1.63. The vibration frequencies of structural water, crystalline water, and phosphate groups determine the infrared absorption spectra and Raman spectra of natural turquoise. The infrared spectrum tests show the IR absorption peaks around 3 508, 3 463, 3 287, 3 086, 1 652, 1 112, 1 060, 841, 784, 648, 569 cm-1 and 483 cm-1; Raman spectrum tests show the peaks around 3 496, 3 471, 3 448, 3 265, 3 069, 1 618, 1 159, 1 102, 1 039, 937, 812, 643, 589, 547, 470 cm-1 and 414 cm-1; The absorption peaks appear near 267, 430, 670 nm and 799 nm in the UV visible spectrum.

    There are many varieties of turquoise's imitation products, commonly seen in the market mainly including trihydrate alumina, barite, magnesite, calcite and mineral mixtures. The most effective and rapid method for distinguishing them from natural turquoise is infrared absorption spectrum of turquoise in the range of 3 600-3 000 cm-1 and 1 200-900 cm-1. The presence of an absorption peak at 430 nm in the UV visible spectrum and the presence of Cu and Fe of colouring elements in turquoise can be used as auxiliary evidence.

  • Figure  1.  Infrared absorption spectrum of natural turquoise
    Figure  2.  Infrared absorption spectra of five turquoise imitations
    Figure  3.  UV-Visible spectrum of natural turquoise
  • [1]
    Foord E E, Taggart J E. A reexamination of the turquoise group: The mineral aheylite, planerite (redefined), turquoise and coeruleolactite[J]. Mineralogical Magazine. 1998, 62(1): 93-111. doi: 10.1180/002646198547495
    [2]
    郝月, 先怡衡, 陈英, 等. 新疆天湖东遗址出产绿松石的矿物学特征及原产地溯源研究[J]. 宝石和宝石学杂志(中英文), 2023, 25(6): 84-94.

    Hao Y, Xian Y H, Chen Y, et al. Mineralogical characteristic and geographic origin tracing of turquoise from Tianhudong site, Xinjiang[J]. Journal of Gems & Gemmology, 2023, 25(6): 84-94. (in Chinese)
    [3]
    熊燕, 陈全莉. 湖北秦古绿松石的可见吸收光谱特征[J]. 宝石和宝石学杂志(中英文), 2008, 10(2): 34-37.

    Xiong Y, Chen Q L. Visible absorption spectrum characteristics of Qingu turquoise from Hubei Province[J]. Journal of Gems & Gemmology, 2008, 10(2): 34-37. (in Chinese)
    [4]
    李克. 安徽马鞍山绿松石电化学处理前后孔隙特征研究[D]. 北京: 中国地质大学, 2017.

    Li K. A study on pore characteristics difference between natural and electrochemical treated turquoises from Maanshan, Anhui Province[D]. Beijing: China University of Geosciences, 2017. (in Chinese)
    [5]
    朱莹, 黎晏彰, 鲁安怀, 等. 方解石-白云石-菱镁矿的中远红外光谱学特征研究[J]. 地学前缘, 2022, 29(1): 459-469.

    Zhu Y, Li Y Z, Lu A H, et al. Middle and far infrared spectroscopic analysis of calcite, dolomite and magnesite[J]. Earth Science Frontiers, 2022, 29(1): 459-469. (in Chinese)
    [6]
    杨池玉, 汤维茜, 张维肖, 等. 重晶石、三水铝石及方解石混合物仿绿松石与天然绿松石的光谱特征及化学成分对比[J]. 宝石和宝石学杂志(中英文), 2024, 26 (1): 57-63.

    Yang C Y, Tang W X, Zhang W X, et al. Comparison of spectral characteristic and chemical compostion of barite, diaspore and calcite mixture imitated turquoise and natural turquoise[J]. Journal of Gems & Gemmology, 2024, 26(1): 57-63. (in Chinese)
    [7]
    戴慧, 亓利剑, 蒋小平, 等. 含环氧树脂的胶黏剂充填处理及染色处理绿松石的谱学特征[C]//2013中国珠宝首饰学术交流会. 北京: 中国宝石, 2013: 182-186.

    Dai H, Qi L J, Jiang X P, et al. The spectroscopic characteristics of turquoises filled by epoxy resin adhesives and dyeing treated turquoises[C]//2013 China Gems & Jewelry Academic Conference. Beijing: China Gems, 2013: 182-186. (in Chinese)
    [8]
    刘喜锋, 林晨露, 李丹丹, 等. 新疆哈密绿松石的矿物学和光谱学特征研究[J]. 光谱学与光谱分析, 2018, 38(4): 1 231-1 239.

    Liu X F, Lin C L, Li D D, et al. Study on mineralogy and spectroscopy of turquoises from Hami, Xinjiang[J]. Spectroscopy and Spectral Analysis, 2018, 38(4): 1 231-1 239. (in Chinese)
    [9]
    陈全莉, 张琰. 具磷灰石假象绿松石的宝石矿物学特征[J]. 宝石和宝石学杂志(中英文), 2005, 7(4): 13-16, 32.

    Chen Q L, Zhang Y. Features of gem-mineralogy of apatite-pseudomorphic turquoise[J]. Journal of Gems & Gemmology, 2005, 7(4): 13-16, 32. (in Chinese)
    [10]
    库雅伦, 杨明星. 湖北十堰蓝色"水波纹"绿松石的谱学特征[J]. 光谱学与光谱分析, 2021, 41(2): 636-642.

    Ku Y L, Yang M X. Study on spectral characteristics of turquoise with blue "water ripple" from Shiyan, Hubei Province[J]. Spectroscopy and Spectral Analysis, 2021, 41(2): 636-642. (in Chinese)

Catalog

    Figures(3)

    Article Metrics

    Article views (121) PDF downloads (52) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return