TONG Yujia, HU Linlin, PAN Shaokui. Spectral and Chemical Composition Characteristics of Black Spinel from Muling, Heilongjiang Province[J]. Journal of Gems & Gemmology, 2024, 26(3): 39-48. DOI: 10.15964/j.cnki.027jgg.2024.03.005
Citation: TONG Yujia, HU Linlin, PAN Shaokui. Spectral and Chemical Composition Characteristics of Black Spinel from Muling, Heilongjiang Province[J]. Journal of Gems & Gemmology, 2024, 26(3): 39-48. DOI: 10.15964/j.cnki.027jgg.2024.03.005

Spectral and Chemical Composition Characteristics of Black Spinel from Muling, Heilongjiang Province

More Information
  • Received Date: October 17, 2023
  • There are a large number of ruby and sapphire deposits related to basalt in Muling area, Heilongjiang Province, in which black spinel is usually mined as an accessory mineral. In recent years, high-quality black spinel has also attracted people's attention because of its large particle size and strong lustre. However, there are few reports on black spinel in Muling area. In this paper, the gemmological characteristics of Muling black spinel were studied by conventional gemmological tests, spectroscopic tests and chemical composition tests. The results indicated that the black spinel samples from Muling predominantly exhibit euhedral to subhedral octahedral crystal shapes, opaque, and displays surface abrasions. Melt inclusions, sulfide inclusions, and octahedral inclusions are visible under the microscope.Muling black spinel belongs to magnesia alumina spinel in a strict sense, and contains some magnesioferrite and magnetite. The high content of iron (14.97-26.37 wt.%) causes mullite spinel to be black and completely impermeable. Mossbauer spectroscopic results showed that iron exists in spinel in two valence states of Fe2+ and Fe3+, in which Fe3+ occupies two cation positions (quaternary coordination and hexagonal coordination) in the crystal structure. The tetrahedral coordination of Fe3+ makes the spinel show some anti spinel structure. Therefore, the Raman spectrum of Muling black spinel is different from that of gem grade transparent magnesium aluminum spinel, but similar to that of other spinel minerals(such as chromite, magnetite). It is dominated by strong wave numbers at 749 cm-1 and 538 cm-1, with smaller peaks or shoulders occurring at about 343, 402, 645 cm-1 and 705 cm-1.

  • [1]
    孙建勋. 黑龙江省东部与红蓝宝石有关的玄武岩及古火山机构的恢复[J]. 岩石矿物学杂志, 1995, 14(2): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW502.003.htm

    Sun J X. Basalt related to ruby and sapphire in eastern Heilongjiang and reconstruction of paleovolcanic mechanism[J]. Acta Petrologica et Mineralogica, 1995, 14(2): 126-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW502.003.htm
    [2]
    刘艺苗, 陈涛. 黑龙江穆棱红、蓝宝石的宝石学特征[J]. 宝石和宝石学杂志(中英文), 2015, 17(4): 1-7. doi: 10.3969/j.issn.1008-214X.2015.04.001

    Liu Y M, Chen T. Gemological characteristic of ruby and sapphire from Muling, Heilongjiang Province[J]. Journal of Gems & Gemmology, 2015, 17(4): 1-7. (in Chinese) doi: 10.3969/j.issn.1008-214X.2015.04.001
    [3]
    Liu Y, Lu R. Sapphire beneath the rich black soil of Muling, Northeastern China[J]. Gems & Gemology, 2022, 58(3): 290-317.
    [4]
    李若萌, 陈涛, 李伟, 等. 黑龙江穆棱地区巨晶斜方辉石矿物学及光谱学特征[J]. 光谱学与光谱分析, 2019, 39(1): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201901029.htm

    Li RM, Chen T, Li W, et al. Spectroscopy analysis on orthopyroxene megacrysts in Heilongjiang Muling area[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 156-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201901029.htm
    [5]
    陈涛, 刘云贵, 尹作为, 等. 黑龙江穆棱地区宝石级石榴石的宝石学及谱学特征[J]. 光谱学与光谱分析, 2013, 33(11): 2 964-2 967. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201311023.htm

    Chen T, Liu Y G, Yin Z W, et al. Gemology and spectra characterization of gem garnet from Muling city, Heilongjiang Province[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 2 964-2 967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201311023.htm
    [6]
    陈涛, 张丽娟, 孙建勋. 黑龙江穆棱地区宝石级锆石成因探讨[J]. 岩石矿物学杂志, 2011, 30(2): 313-324. doi: 10.3969/j.issn.1000-6524.2011.02.017

    Chen T, Zhang L J, Sun J X. The formation of gem-quality zircon in areas of alkali-basaltoid volcanism of Muling city, Heilongjiang Province[J]. Acta Petrologica et Mineralogica, 2011, 30(2): 313-324. (in Chinese) doi: 10.3969/j.issn.1000-6524.2011.02.017
    [7]
    Sun P, Niu Y, Guo P, et al. Sublithosphere mantle crystallization and immiscible sulfide melt segregation in continental basalt Magmatism: evidence from Clinopyroxene Megacrysts in the Cenozoic basalts of eastern China[J]. Journal of Petrology, 2022, 63(2): 1-27.
    [8]
    Hellebrand E, Snow J E, Dick H J B, et al. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites[J]. Nature, 2001, 410(6 829): 677-681.
    [9]
    Kruzslicz Ä B, Nasdala L, Wildner M, et al. Black spinel-A gem material from Bo Phloi, Thailand[J]. The Journal of Gemmology, 2020, 37(1): 66-79. doi: 10.15506/JoG.2020.37.1.66
    [10]
    Irving A J. Megacrysts from the Newer Basalts and other basaltic rocks of southeastern Australia[J]. Geological Society of America Bulletin, 1974, 85(10): 1 503-1 514. doi: 10.1130/0016-7606(1974)85<1503:MFTNBA>2.0.CO;2
    [11]
    Irving A J, Frey F A. Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and megacryst genesis[J]. Geochimica et Cosmochimica Acta, 1984, 48(6): 1 201-1 221. doi: 10.1016/0016-7037(84)90056-5
    [12]
    Yu X, Zeng G, Chen L H, et al. Magma-magma interaction in the mantle recorded by megacrysts from Cenozoic basalts in eastern China[J]. International Geology Review, 2018, 61(6): 675-691.
    [13]
    Hu L L, Pan S K, Lu R, et al. Origin of gem-quality megacrysts in the Cenozoic alkali basalts from the Muling area, northeastern China[J]. Lithos, 2022(422): 106 720.
    [14]
    Boguslavska N N. Reststrahlen spectroscopy of MgAl2O4 spinel[J]. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2002, 5(1): 95-100. doi: 10.15407/spqeo5.01.095
    [15]
    D'ippolito V, Andreozzi G B, Hålenius U, et al. Color mechanisms in spinel: cobalt and iron interplay for the blue color[J]. Physics and Chemistry of Minerals, 2015, 42(6): 431-439. doi: 10.1007/s00269-015-0734-0
    [16]
    徐培苍, 李如碧, 王永强, 等. 地学中的拉曼光谱[M]. 西安: 陕西科学技术出版社, 1996.

    Xu P C, Li R B, Wang Y Q, et al. Raman spectroscopy in geology[M]. Xi'an: Shaanxi Science and Technology Press, 1996. (in Chinese)
    [17]
    Lenaz D, Lughi V. Raman spectroscopy and the inversion degree of natural Cr-bearing spinels[J]. American Mineralogist, 2017, 102(2): 327-332.
    [18]
    Wang A, Kuebler K E, Jolliff B L, et al. Raman spectroscopy of opaque minerals and applications to EETA79001 martian meteorite[J]. Earth & Planetary Sciences, 2001.
    [19]
    Fregolal R A, Skogby H, Bosi F, et al. Optical absorption spectroscopy study of the causes for color variations in natural Fe-bearing gahnite: Insights from iron valency and site distribution data?[J]. American Mineralogist, 2014, 99(11-12): 2 187-2 195.
    [20]
    Jastrzebska I, Bodnar W, Witte K, et al. Structural properties of Mn-substituted hercynite[J]. Nukleonika, 2017, 62(2): 95-100.
    [21]
    Andreozzi G B, D'ippolito V, Skogby H, et al. Color mechanisms in spinel: A multi-analytical investigation of natural crystals with a wide range of coloration[J]. Physics and Chemistry of Minerals, 2018, 46(4): 343-360.
    [22]
    Dyar M D, Agresti D G, Schaefer M W, et al. Mössbauer spectroscopy of earth and planetary materials[J]. Annual Review of Earth and Planetary Sciences, 2006, 34(1): 83-125.

Catalog

    Article Metrics

    Article views (176) PDF downloads (66) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return