LI Jianhua, HU Junheng, SU Panzhe, LU Jihong, ZANG Jinhao, WANG Yuchang. Progress in Synthesis and Analysis of Lab-Grown Diamond[J]. Journal of Gems & Gemmology, 2021, 23(6): 12-24. DOI: 10.15964/j.cnki.027jgg.2021.06.002
Citation: LI Jianhua, HU Junheng, SU Panzhe, LU Jihong, ZANG Jinhao, WANG Yuchang. Progress in Synthesis and Analysis of Lab-Grown Diamond[J]. Journal of Gems & Gemmology, 2021, 23(6): 12-24. DOI: 10.15964/j.cnki.027jgg.2021.06.002

Progress in Synthesis and Analysis of Lab-Grown Diamond

More Information
  • Received Date: October 15, 2021
  • The rapid progress of lab-grown diamond technology has greatly improved the size and quality of lab-grown diamonds, which broadened the application field of diamond and laid a solid foundation for the market promotion. In this paper, the process of lab-grown diamond technology at home and abroad is reviewed. The mechanism and characteristics of high pressure high temperature (HPHT) and chemical vapor deposition (CVD) process are introduced, as well as the performance of lab-grown diamonds at home and abroad. The technical problems need to be solved are analyzed and the development direction of diamond synthesis technology in laboratory is prospected. At the same time, the analysis and testing principles of optical properties, thermal properties and semiconductor properties of lab-grown diamonds and common testing equipments are introduced. Lastly, the application status and development prospect of lab-grown diamond products in jewelry, semiconductor, optical devices, acoustic devices, precision cutting and biomedical fields are expounded.

  • [1]
    Bundy F P, Bovenkerk H P, Strong H M, et al. Diamond-graphite equilibrium line from growth and fraphitization of diamond[J]. The Journal of Chemical Physics, 1961, 35(2): 383-391.
    [2]
    General Electric Company. Method of growing diamond on a diamond seed crystal: US, 3297407[P]. 1967-01-10.
    [3]
    Strong H M, Wentorf R H. The Growth of large diamond crystals[J]. Naturwissenschaften, 1972, 59(1): 1-7. doi: 10.1007/BF00594616
    [4]
    Strong H M, Chrenko R M. Diamond growth rates and physical properties of laboratory-made diamond[J]. The Journal of Physical Chemistry, 1971, 75(12): 1 838-1 843. doi: 10.1021/j100681a014
    [5]
    Wentorf R H. Diamond growth rates[J]. The Journal of Physical Chemistry, 1971, 75(12): 1 833-1 837. doi: 10.1021/j100681a013
    [6]
    Sumiya H, Satoh S. High-pressure synthesis of high-purity diamond crystal[J]. Diamond and Related Materials, 1996, 5(11): 1 359-1 365. https://www.sciencedirect.com/science/article/abs/pii/0925963596005596
    [7]
    Sumiya H, Harano K, Tamasaku K. HPHT synthesis and crystalline quality of large high-quality (001) and (111) diamond crystals[J]. Diamond and Related Materials, 2015, 58: 221-225. https://www.sciencedirect.com/science/article/abs/pii/S0925963515300194
    [8]
    Burns R C, Hansen J O, Spits R A, et al. Growth of high purity large synthetic diamond crystals[J]. Diamond and Related Materials, 1999, 8(8): 1 433-1 437. https://www.sciencedirect.com/science/article/abs/pii/S0925963599000424
    [9]
    王裕昌. 人造大单晶金刚石的合成技术进展及主要应用[J]. 超硬材料工程, 2008, 20(6): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBKJ200806009.htm

    Wang Y C. Advance on synthesis and major applications of large crystal diamond[J]. Superhard Material Engineering, 2008, 20(6): 28-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBKJ200806009.htm
    [10]
    薛志麟. 压力与温度对用"晶种法"生长金刚石的影响[J]. 无机材料学报, 1981(Z1): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL1981Z1003.htm

    Xue Z L. Influence of pressure and temperature on diamond growing by seed method[J]. Journal of Inorganic Materials, 1981(Z1): 7-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL1981Z1003.htm
    [11]
    胡志方. 简述金刚石人工合成进展[J]. 冶金与材料, 2020, 40(3): 142-145. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYJ202003078.htm

    Hu Z F. Briefly describtion of diamond synthesis progress[J]. Metallurgy Materials, 2020, 40(3): 142-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLYJ202003078.htm
    [12]
    Takeuchi N, Yamanashi Y, Saito Y, et al. 3D simulation of superconducting microwave devices with an electromagnetic-field simulator[J]. Physica C Superconductivity, 2009, 469(15): 1 662-1 665. https://www.sciencedirect.com/science/article/abs/pii/S0921453409003712
    [13]
    Union Carbide Corporation. Synthesis of diamond: US, 3030187, 3030188[P]. 1962-04-17.
    [14]
    Locher R, Wild C, Herres N, et al. Nitrogen stabilized 〈100〉 texture in chemical vapor deposited diamond films[J]. Applied Physics Letters, 1994, 65(1): 34-36. doi: 10.1063/1.113064
    [15]
    The United States of America as represented by the Secretary of the Navy. High temperature, high rate, epitaxial synthesis of diamond in a laminar plasma: US, 5704976[P]. 1998-01-06.
    [16]
    Carnegie Institution of Washington. Apparatus and method for diamond production: US, 6858078[P]. 2005-02-22.
    [17]
    Apollo Diamond, Inc. System and method for producing systhetic diamond: US, 7258741[P]. 2003-04-08.
    [18]
    Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers[J]. Scientific Reports, 2017, 7(1): 1-8. https://www.nature.com/articles/srep44462/
    [19]
    罗凯. 宝石级单晶金刚石外延生长的研究[D]. 武汉: 武汉工程大学, 2019.

    Luo K. Study on epitaxial growth of gem-quality single crystal diamond[D]. Wuhan: Wuhan Institute of Technology, 2019. (in Chinese)
    [20]
    Kamo M, Sato Y, Matsumoto S, et al. Diamond synthesis from gas phase in microwave plasma[J]. Journal of Crystal Growth, 1983, 62(3): 642-644. https://www.sciencedirect.com/science/article/pii/0022024883904116
    [21]
    Saito Y, Matsuda S, Nogita S. Synthesis of diamond by decomposition of methane in microwave plasma[J]. Journal of Materials Science Letters, 1986, 5(5): 565-568. doi: 10.1007/BF01728692
    [22]
    Berthou H, Faure C, Hänni W, et al. Morphology and Raman spectra of diamond films grown with a plasma torch[J]. Diamond and Related Materials, 1999, 8(2): 636-639. https://www.sciencedirect.com/science/article/abs/pii/S092596359800332X
    [23]
    Konov V I, Prokhorov A M, Uglov S A, et al. CO2 Laser-induced plasma CVD synthesis of diamond[J]. Applied Physics A, 1998, 66(5): 575-578. doi: 10.1007/s003390050716
    [24]
    Shu G, Dai B, Bolshakov A, et al. Coessential-connection by microwave plasma chemical vapor deposition: A common process towards wafer scale single crystal diamond[J]. Functional Diamond, 2021, 1(1): 47-62. doi: 10.1080/26941112.2020.1869511
    [25]
    Geis M W, Efremow N N, Susalka R, et al. Mosaic diamond substrates approaching single-crystal quality using cube-shaped diamond seeds[J]. Diamond and Related Materials, 1994, 4(1): 76-82. https://www.sciencedirect.com/science/article/abs/pii/0925963594900728
    [26]
    刘金龙, 李成明, 朱肖华, 等. 探测器级单晶金刚石材料的生长[J]. 人工晶体学报, 2019, 48(11): 1 990-1 991. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT201911002.htm

    Liu J L, Li C M, Zhu X H, et al. Growth of detector grade single crystal diamond[J]. Journal of Synthetic Crystals, 2019, 48(11): 1 990-1 991. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT201911002.htm
    [27]
    林晓棋, 满卫东, 吕继磊, 等. Ar对微波等离子体CVD单晶金刚石生长的影响[J]. 人工晶体学报, 2015, 44(2): 337-341. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT201502009.htm

    Lin X Q, Man W D, Lyu J L, et al. Effect of argon addition on single crystal diamond synthesized by microwave plasma CVD[J]. Journal of Synthetic Crystals, 2015, 44(2): 337-341. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT201502009.htm
    [28]
    李建军, 范澄兴, 程佑法, 等. 金刚石UV-Vis-MIR光谱常见特征综述[J]. 人工晶体学报, 2021, 50(1): 158-166. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202101026.htm

    Li J J, Fan C X, Cheng Y F, et al. Review for frequent characteristics of diamond UV-Vis-MIR spectra[J]. Journal of Synthetic Crystals, 2021, 50(1): 158-166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202101026.htm
    [29]
    屠菊萍, 刘金龙, 邵思武, 等. 高质量单晶金刚石的合成、结构与光学性能研究[J]. 光学学报, 2020, 40(6): 205-212. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202006024.htm

    Tu J P, Liu J L, Shao S W, et al. Synthesis, structure, and optical properties of a high-quality single-crystal diamond[J]. Acta Optica Sinica, 2020, 40(6): 205-212. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202006024.htm
    [30]
    [31]
    Zhang Z F, Jia X P, Sun S S, et al. Effects of hydrogen impurity on diamond crystal growth process[J]. International Journal of Refractory Metals and Hard Materials, 2013(38): 111-117. https://www.sciencedirect.com/science/article/abs/pii/S0263436813000231
    [32]
    Sumiya H, Satoh S, Yazu S. High-quality synthetic diamond crystals[J]. The Review of High Pressure Science and Technology, 1998(7): 960-965.
    [33]
    Zhang Y, Zang C, Ma H, et al. HPHT synthesis of large single crystal diamond doped with high nitrogen concentration[J]. Diamond and Related Materials, 2008, 17(2): 209-211. https://www.sciencedirect.com/science/article/abs/pii/S0925963507005286
    [34]
    Fallon P J, Brown L M, Barry J C, et al. Nitrogen determination and characterization in natural diamond platelets[J]. Philosophical Magazine A, 1995, 72(1): 21-37. doi: 10.1080/01418619508239580
    [35]
    Fang C, Zhang Y, Shen W, et al. Synthesis and characterization of HPHT large single-crystal diamonds under the simultaneous influence of oxygen and hydrogen[J]. Cryst Eng Comm, 2017, 19(38): 5 727-5 734. https://pubs.rsc.org/en/content/articlelanding/2017/ce/c7ce01349c
    [36]
    Sumiya H, Satoh S. High-pressure synthesis of high-purity diamond crystal[J]. Diamond and Related Materials, 1996, 5(11): 1 359-1 365. https://www.sciencedirect.com/science/article/abs/pii/0925963596005596
    [37]
    Fernández-Lorenzo C, Araújo D, González-Mañas M, et al. Multi-technique analysis of high quality HPHT diamond crystal[J]. Journal of Crystal Growth, 2012, 353(1): 115-119. https://www.sciencedirect.com/science/article/pii/S0022024812003296
    [38]
    Sumiya H, Toda N, Nishibayashi Y, et al. Crystalline perfection of high purity synthetic diamond crystal[J]. Journal of Crystal Growth, 1997, 178(4): 485-494. https://www.sciencedirect.com/science/article/pii/S002202489600797X
    [39]
    Hainschwang T, Notari F, Pamies G. A defect study and classification of brown diamonds with deformation-related color[J]. Minerals, 2020, 10(10): 903. https://www.mdpi.com/2075-163X/10/10/903
    [40]
    张秀芝, 王凯悦, 李志宏, 等. 氮对金刚石缺陷发光的影响[J]. 物理学报, 2015, 64(24): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201524048.htm

    Zhang X Z, Wang K Y, Li Z H, et al. Effect of nitrogen on luminescence of diamond defects[J]. Acta Physica Sinica, 2015, 64(24): 390-394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201524048.htm
    [41]
    徐永宽, 王军山, 陈建丽, 等. MPCVD侧面扩展生长单晶金刚石形貌及光谱[J]. 半导体技术, 2018, 43(9): 697-701. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTJ201809010.htm

    Xu Y K, Wang J S, Chen J L, et al. Morphology and spectroscopy of the single crystaldiamond by MPCVD lateral growth[J]. Semiconductor Technology, 2018, 43(9): 697-701. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BDTJ201809010.htm
    [42]
    韩飞, 李尚升, 朱丽飞, 等. 激光拉曼光谱法在金刚石研究中的应用[J]. 人工晶体学报, 2018, 47(5): 1 060-1 065.

    Han F, Li S S, Zhu L F, et al. Application of laser Raman spectroscopy method in research of diamond[J]. Journal of Synthetic Crystals, 2018, 47(5): 1 060-1 065. (in Chinese)
    [43]
    孟令晶. 激光拉曼光谱成像系统的研制及其应用[D]. 桂林: 广西师范大学, 2011. https://cdmd.cnki.com.cn/Article/CDMD-10602-1011246313.htm

    Meng L J. Stydy and applicantion of laser Raman spectroscopy mapping system[D]. Guilin: Guangxi Normal University, 2011. (in Chinese) https://cdmd.cnki.com.cn/Article/CDMD-10602-1011246313.htm
    [44]
    胡美华, 毕宁, 龚春生. 硼和氮掺杂金刚石单晶的合成与Raman光谱研究[J]. 人工晶体学报, 2016, 45(6): 1 477-1 481. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT201606008.htm

    Hu M H, Bi N, Gong C S. Study on synthesis and Raman spectra of boron and nitrogen doped diamond single crystals[J]. Journal of Synthetic Crystals, 2016, 45(6): 1 477-1 481. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT201606008.htm
    [45]
    匡同春, 刘正义. 激光拉曼光谱在CVD金刚石薄膜质量表征中的应用[J]. 理化检验(物理分册), 1997(7): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW199707002.htm

    Kuang T C, Liu Z Y. Applcations of laser Raman spectroscopy in characterizing the quality of CVD diamond films[J]. Physical Testing and Chemical Analysis Part A (Physical Testing), 1997(7): 21-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW199707002.htm
    [46]
    叶永权, 匡同春, 雷淑梅, 等. 金刚石(膜)的拉曼光谱表征技术进展[J]. 金刚石与磨料磨具工程, 2007(5): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM200705004.htm

    Ye Y Q, Kuang T C, Lei S M, et al. Technique progress in Raman spectroscopy characterization of diamond or diamond film[J]. Diamond & Abrasives Engineering, 2007(5): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM200705004.htm
    [47]
    冯丹丹. 电子封装用金刚石复合材料的制备及导热性能研究[D]. 天津: 天津大学, 2018.

    Feng D D. Preparation and thermal conductivity property of diamond composites for electronic packaging[D]. Tianjin: Tianjin University, 2018. (in Chinese)
    [48]
    孙再吉. 金刚石半导体器件的研究与展望[J]. 电子工程师, 2000(2): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZGS200002013.htm

    Sun Z J. Study and prospect of diamond semiconductor devices[J]. Electronic Engineers, 2000(2): 39-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZGS200002013.htm
    [49]
    熊礼威, 汪建华, 满卫东, 等. 金刚石半导体研究进展[J]. 材料导报, 2010, 24(7): 117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201007029.htm

    Xiong L W, Wang J H, Mang W D, et al. Progress in diamond semiconductor[J]. Materials Reports, 2010, 24(7): 117-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201007029.htm
    [50]
    江铭波, 阎旭东, 徐国旺. 霍尔效应及霍尔元件在物理量测量中的应用[J]. 湖北工业大学学报, 2011, 26(2): 142-144. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGX201102040.htm

    Jiang M B, Yan X D, Xu G W. Hall effect and the application of Hall element in physical quantity measurement[J]. Journal of Hubei University of Technology, 2011, 26(2): 142-144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBGX201102040.htm
    [51]
    李建昌, 王永, 王丹, 等. 半导体电学特性四探针测试技术的研究现状[J]. 真空, 2011, 48(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201103002.htm

    Li J C, Wang Y, Wang D, et al. Progress of the four-probe technique for semiconductor conductivity characterization[J]. Vacuum, 2011, 48(3): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201103002.htm
    [52]
    陈亚男, 张烨, 郁万成, 等. 金刚石半导体材料和器件的研究现状[J]. 微纳电子技术, 2017, 54(4): 217-228. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201704001.htm

    Chen Y N, Zhang Y, Yu W C, et al. Research status of diamond semiconductor materials and devices[J]. Micronanoelectronic Technology, 2017, 54(4): 217-228. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201704001.htm
    [53]
    王艳丰, 王宏兴. MPCVD单晶金刚石生长及其电子器件研究进展[J]. 人工晶体学报, 2020, 49(11): 2 139-2 152. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202011016.htm

    Wang Y F, Wang H X. Research progress of MPCVD single crystal diamond growth and diamond electronic devices[J]. Journal of Synthetic Crystals, 2020, 49(11): 2 139-2 152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202011016.htm
    [54]
    黄广伟, 吴坤, 陈晔, 等. 单晶金刚石探测器对14MeV单能中子响应研究[J]. 物理学报, 2021, 70(20): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202120006.htm

    Huang G W, Wu K, Chen Y, et al. Response of single crystal diamond detector to 14MeV single energy neutrons[J]. Acta Physica Sinica, 2021, 70(20): 34-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202120006.htm
    [55]
    童恒义, 汪渊, 周长庚, 等. 核辐射探测器金刚石膜制备技术研究[J]. 核电子学与探测技术, 2014, 34(12): 1 499-1 503. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE201412021.htm

    Tong H Y, Wang Y, Zhou C G, et al. Study on diamond film preparation technology for nuclear radiation detector[J]. Nuclear Electronics & Detection Technology, 2014, 34(12): 1 499-1 503. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HERE201412021.htm
    [56]
    Schmid G J, Koch J A, Lerche R A, et al. A neutron sensor based on single crystal CVD diamond[J]. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2004, 527(3): 554-561. https://www.sciencedirect.com/science/article/abs/pii/S0168900204009726
    [57]
    吕智, 马忠强, 蒋燕麟, 等. 功能金刚石的发展现状及产业化前景[J]. 超硬材料工程, 2020, 32(4): 22-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBKJ202004008.htm

    Lyu Z, Ma Z Q, Jiang Y L, et al. The development status and industrialization prospect of functional diamond[J]. Superhard Material Engineering, 2020, 32(4): 22-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBKJ202004008.htm
    [58]
    安晓明, 葛新岗, 刘晓晨, 等. 高功率CO2激光器CVD金刚石窗口制备研究[J]. 人工晶体学报, 2021, 50(6): 1 010-1 015. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202106005.htm

    An X M, Ge X G, Liu X C, et al. Preparation of CVD diamond window for high power CO2 laser[J]. Journal of Synthetic Crystals, 2021, 50(6): 1 010-1 015. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202106005.htm
    [59]
    Ying X Y, Xu X M. CVD diamond thin film for IR optics and X-ray optic[J]. Thin Solid Films, 2000, 368(2): 297-299. https://www.sciencedirect.com/science/article/abs/pii/S0040609000007860
    [60]
    Jelezko F, Gaebel T, Popa I, et al. Observation of coherent oscillations in a single electron spin[J]. Physical Review Letters, 2004, 92(7): 76 401. doi: 10.1103/PhysRevLett.92.076401
    [61]
    Gruber A, Dräbenstedt A, Tietz C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 1997, 276(5 321): 2 012-2 014. doi: 10.1126/science.276.5321.2012
    [62]
    Jelezko F, Tietz C, Gruber A, et al. Spectroscopy of single N-V centers in diamond[J]. Single Molecules, 2001, 2(4): 255-260.
    [63]
    Forrest, Charnock T, Kennedy T A. Combined optical and microwave approach for performing quantum spin operations on the nitrogen-vacancy center in diamond[J]. Physical Review B, 2001, 64(4): 41 201. doi: 10.1103/PhysRevB.64.041201
    [64]
    Maze J R, Stanwix P L, Hodges J S, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond[J]. Nature, 2008, 455(7 213): 644-647. https://www.nature.com/articles/nature07279/
    [65]
    Yu S, Kang M, Chang H, et al. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity[J]. Journal of the American Chemical Society, 2005, 127(50): 17 604-17 605. https://pubmed.ncbi.nlm.nih.gov/16351080/
    [66]
    Doherty M W, Struzhkin V V, Simpson D A, et al. Electronic properties and metrology applications of the diamond NV- center under pressure[J]. Physical Review Letters, 2014, 112(4): 47 601. https://pubmed.ncbi.nlm.nih.gov/24580492/
  • Related Articles

    [1]ZHANG An, SUN Zhulin, ZHAO Baoyin, BAO Wei. Gemmological Characteristic of Quartzite Jade "Feizhoucui" and Its Identification[J]. Journal of Gems & Gemmology, 2025, 27(2): 28-35. DOI: 10.15964/j.cnki.027jgg.2025.02.004
    [2]YU Liangang. Gemmological and Spectral Characteristics of Quartzite ("Dulong Yu")[J]. Journal of Gems & Gemmology, 2022, 24(3): 20-30. DOI: 10.15964/j.cnki.027jgg.2022.03.003
    [3]LIN Weifeng, YUAN Feng, LUO Qi, CHI Guangcheng. Gemmological and Mineralogical Characteristic of Muscovite Jade from Xinbin, Liaoning Province[J]. Journal of Gems & Gemmology, 2019, 21(3): 18-25. DOI: 10.15964/j.cnki.027jgg.2019.03.003
    [4]OU Xiaoya, LI Liping, YAN Bing, ZHANG Qian. Structural Characteristic of Tridacna and Its Similar Shell[J]. Journal of Gems & Gemmology, 2018, 20(5): 15-26. DOI: 10.15964/j.cnki.027jgg.2018.05.002
    [5]QU Zhuxuan, DENG Changjie. Mineral Component of Jade from Taishan[J]. Journal of Gems & Gemmology, 2015, 17(5): 32-36.
    [6]MA Yubo, LI Liping, YAN Weijia. Structure of the Golden Calcareous Coral and Origin of Its Iridescence[J]. Journal of Gems & Gemmology, 2015, 17(2): 1-7.
    [7]ZHOU Danyi, CHEN Hua, LU Taijin, ZHANG Yong, KE Jie. “Whitening Phenomenon”of Quartzite Jade[J]. Journal of Gems & Gemmology, 2015, 17(1): 24-30.
    [8]BAO Yong. Gemmological Characteristics of a Quartzite-albite Jade[J]. Journal of Gems & Gemmology, 2013, 15(3): 60-64.
    [9]MA Ying, LAN Yan, ZHANG Ji-he, WANG Min-min, LI Mei. Research on Mineral Components of Albite Jade Base on Advanced Technology[J]. Journal of Gems & Gemmology, 2013, 15(3): 36-42.
    [10]ZHANG Yong, KE Jie, LU Tai-jin, CHEN Hua, YANG Tian-chang. Study on Ingredients of Dendrite Pattern in Yellow Quartzite Jade[J]. Journal of Gems & Gemmology, 2012, 14(3): 1-5.

Catalog

    Article Metrics

    Article views (2032) PDF downloads (195) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return