LI Yan, SU Xiaopeng, LI Xingping, FENG Yilei, LI Jiarong, WANG Yamei. A Review on Pretreatment Method for the Analysis of Complex Chemical Composition of Resinite[J]. Journal of Gems & Gemmology, 2022, 24(5): 69-83. DOI: 10.15964/j.cnki.027jgg.2022.05.006
Citation: LI Yan, SU Xiaopeng, LI Xingping, FENG Yilei, LI Jiarong, WANG Yamei. A Review on Pretreatment Method for the Analysis of Complex Chemical Composition of Resinite[J]. Journal of Gems & Gemmology, 2022, 24(5): 69-83. DOI: 10.15964/j.cnki.027jgg.2022.05.006

A Review on Pretreatment Method for the Analysis of Complex Chemical Composition of Resinite

More Information
  • Received Date: September 19, 2022
  • The separation, detection, and analysis of complex organic compositions in fossil resin have always been a hot and difficult point in the research. The early sample pretreatment methods and the separation and analysis efficiency of one-dimensional gas chromatography-mass spectrometry (1D GC-MS) were limited, overlapping spectral peaks and missing mass spectra peaks of trace substances easily occurred in the chromatography-mass spectrometry analysis, .Hence, it was difficult to accurately identify its chemical compositions. In this review, it systematically summarizes the application, advantages, and disadvantages of four pretreatment methods (solvent extraction, chemical derivatization, pyrolysis, and solid phase microextraction) used in the compositions analysis of resinites. (1)Solvent extraction is suitable for the analysis of sesquiterpenes, triterpenes, phenols, saturated hydrocarbons, aromatic hydrocarbons, and other substances in the resin fossils. However, amber with high degree of petrifaction requires a long time to dissolve and cannot be completely dissolved, hence, solvent extraction is much more applicable to copal with lower degree rather than highly fossilized amber. (2)Chemical derivatization is applicable to qualitative analysis of molecules with active hydrogen in the group, which can effectively improve the volatility and stability of related molecules and enhance the response signal intensity after derivatization. (3)Thermal pyrolysis mainly aims at the analysis of the main macromolecular skeleton of the resinite, but there will be some deviation in the reduction of the initial structure by the pyrolysates. (4)Solid phase microextraction is suitable for the analysis of volatile/semi-volatile components in amber, but it is prone to incomplete detection. The sample pretreatment technologies of headspace high-capacity solid phase microextraction and direct thermal desorption combining with comprehensive two-dimensional gas chromatography and mass spectrometry (GC-MS) were creatively proposed, which could detect 3-4 times as many compounds number as the traditional analysis method. More representative biomarkers can be screened by untargeted metabolomics strategies to analyze the GC-MS results of resinites from different habitats. Our team will focus on the isolation of complex organic components and the accurate identification of isomers, and reveal the origin of ancient plants and genesis of resin fossils of different origins and ages. It is expected to solve the outstanding problems in the detection and analysis of complex organic components in the solid phase, and efficiently analyze volatile and semi volatile organic compounds in terms of separation, secondary enrichment, and screening of highly specific biomarkers, which provides a theoretical and technical foundation for the exploration of reconstruction of their palaeoecological environment and maturation evolution.
  • [1]
    Daher C, Pimenta V, Bellot-Gurlet L. Towards a non-invasive quantitative analysis of the organic components in museum objects varnishes by vibrational spectroscopies: Methodological approach[J]. Talanta, 2014(129): 336-345.
    [2]
    Sutton P A, Lewis C A, Rowland S J. Isolation of individual hydrocarbons from the unresolved complex hydrocarbon mixture of a biodegraded crude oil using preparative capillary gas chromatography[J]. Organic Geochemistry, 2005, 36(6): 963-970. doi: 10.1016/j.orggeochem.2004.11.007
    [3]
    Arismendi G G, Tappert R, McKellar R C, et al. Deuterium exchange ability in modern and fossil plant resins[J]. Geochimica et Cosmochimica Acta, 2018(239): 159-172.
    [4]
    Dal Corso J, Schmidt A R, Seyfullah L J, et al. Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins[J]. Geochimica et Cosmochimica Acta, 2017(199): 351-369.
    [5]
    Dutta S, Mehrotra R C, Paul S, et al. Remarkable preservation of terpenoids and record of volatile signalling in plant-animal interactions from Miocene amber[J]. Scientific Reports, 2017(7): 1-6.
    [6]
    Seyfullah L J, Beimforde C, Dal Corso J, et al. Production and preservation of resins-past and present[J]. Biological Reviews, 2018, 93(3): 1 684-1 714. doi: 10.1111/brv.12414
    [7]
    Jiang X R, Zhang Z Q, Wang Y M, et al. Gemmological and spectroscopic characteristics of different varieties of amber from the hukawng valley, Myanmar[J]. Journal of Gemmology, 2020, 37(2): 144-162. doi: 10.15506/JoG.2020.37.2.144
    [8]
    Otto A, Simoneit B R T, Wilde V. Terpenoids as chemosystematic markers in selected fossil and extant species of pine (Pinus, Pinaceae)[J]. Botanical Journal of the Linnean Society, 2007, 154(1): 129-140. doi: 10.1111/j.1095-8339.2007.00638.x
    [9]
    Anderson K B, Winans R E, Botto R E. The nature and fate of natural resins in the geosphere--Ⅱ. Identification, classification and nomenclature of resinites[J]. Organic Geochemistry, 1992, 18(6): 829-841. doi: 10.1016/0146-6380(92)90051-X
    [10]
    Pereira R, Carvalho I D, Simoneit B R T, et al. Molecular composition and chemosystematic aspects of Cretaceous amber from the Amazonas, Araripe and Reconcavo basins, Brazil[J]. Organic Geochemistry, 2009, 40(8): 863-875. doi: 10.1016/j.orggeochem.2009.05.002
    [11]
    Chekryzhov I Y, Nechaev V P, Kononov V V. Blue-fluorescing amber from Cenozoic lignite, eastern Sikhote-Alin, Far East Russia: Preliminary results[J]. International Journal of Coal Geology, 2014(132): 6-12.
    [12]
    Anderson K B. Investigation of C-ring aromatic diterpenoids in Raitan amber by pyrolysis-GC-matrix-isolation FTIR-MS[J]. Geochemical Transactions, 2006, 7(2): 1-9.
    [13]
    王雅玫, 牛盼, 谢璐华. 应用稳定同位素示踪琥珀的产地[J]. 宝石和宝石学杂志(中英文), 2013, 15(3): 9-17. doi: 10.3969/j.issn.1008-214X.2013.03.002

    Wang Y M, Niu P, Xie L H. Stable isotopes tracing of origin of ambers[J]. Journal of Gems & Gemmology, 2013, 15(3): 9-17. (in Chinese) doi: 10.3969/j.issn.1008-214X.2013.03.002
    [14]
    张志清, 蒋欣然, 王雅玫, 等. 不同产地常见琥珀品种的三维荧光光谱特征[J]. 宝石和宝石学杂志(中英文), 2020, 22(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202003001.htm

    Zhang Z Q, Jiang X R, Wang Y M, et al. Fluorescence spectral characteristic of amber from Baltic Sea region, Dominican Republic, Mexico, Myanmar and Fushun, China[J]. Journal of Gems & Gemmology, 2020, 22(3): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202003001.htm
    [15]
    Islas C A, Suelves I, Carter J F, et al. Structural characterisation of Baltic amber and its solvent extracts by several mass spectrometric methods[J]. Rapid Communications in Mass Spectrometry, 2001, 15(11): 845-856. doi: 10.1002/rcm.306
    [16]
    Chaler R, Grimalt J O. Fingerprinting of Cretaceous higher plant resins by infrared spectroscopy and gas chromatography coupled to mass spectrometry[J]. Phytochemical Analysis, 2005, 16(6): 446-450. doi: 10.1002/pca.868
    [17]
    Menor-Salvan C, Najarro M, Velasco F, et al. Terpenoids in extracts of Lower Cretaceous ambers from the Basque-Cantabrian Basin (El Soplao, Cantabria, Spain): Paleochemotaxonomic aspects[J]. Organic Geochemistry, 2010, 41(10): 1 089-1 103. doi: 10.1016/j.orggeochem.2010.06.013
    [18]
    Mallick M, Dutta S, Greenwood P F. Molecular characterization of fossil and extant dammar resin extracts: Insights into diagenetic fate of sesqui-and triterpenoids[J]. International Journal of Coal Geology, 2014(121): 129-136.
    [19]
    Bechtel A, Chekryzhov I Y, Nechaev V P, et al. Hydrocarbon composition of Russian amber from the Voznovo lignite deposit and Sakhalin Island[J]. International Journal of Coal Geology, 2016(167): 176-183.
    [20]
    Wang Y M, Jiang W Q, Feng Q, et al. Identification of 15-nor-cleroda-3, 12-diene in a Dominican amber[J]. Organic Geochemistry, 2017(113): 90-96.
    [21]
    Osete-Cortina L, Domenech-Carbo M T. Analytical characterization of diterpenoid resins present in pictorial varnishes using pyrolysis-gas chromatography-mass spectrometry with on line trimethylsilylation[J]. Journal of Chromatography A, 2005, 1065(2): 265-278. doi: 10.1016/j.chroma.2004.12.078
    [22]
    Colombini M P, Ribechini E, Rocchi M, et al. Analytical pyrolysis with in-situ silylation, Py (HMDS)-GC/MS, for the chemical characterization of archaeological and historical amber objects[J]. Heritage Science, 2013, 1(1): 1-10. doi: 10.1186/2050-7445-1-1
    [23]
    Sonibare O O, Huang R J, Jacob D E, et al. Terpenoid composition and chemotaxonomic aspects of Miocene amber from the Koroglu Mountains, Turkey[J]. Journal of Analytical and Applied Pyrolysis, 2014(105): 100-107.
    [24]
    Poulin J, Helwig K. Class Id resinite from Canada: A new sub-class containing succinic acid[J]. Organic Geochemistry, 2012(44): 37-44.
    [25]
    Poulin J, Helwig K. Inside amber: The structural role of succinic acid in class Ia and class Id resinite[J]. Analytical Chemistry, 2014, 86(15): 7 428-7 435. doi: 10.1021/ac501073k
    [26]
    Poulin J, Helwig K. The characterisation of amber from deposit sites in western and northern Canada[J]. Journal of Archaeological Science: Reports, 2016(7): 155-168.
    [27]
    van der Werf I D, Fico D, De Benedetto G E, et al. The molecular composition of Sicilian amber[J]. Microchemical Journal 2016(125): 85-96. doi: 10.1016/j.microc.2015.11.012
    [28]
    Decq L, Abatih E, Van Keulen H, et al. Nontargeted pattern recognition in the search for pyrolysis gas chromatography/mass spectrometry resin markers in historic lacquered objects[J]. Analytical Chemistry, 2019, 91(11): 7 131-7 138.
    [29]
    Park J S, Lim Y J. Analysis of ambers with different origin by IR and py/GC/MS[J]. Analytical Science and Technology, 2011, 24(4): 256-265.
    [30]
    Park J, Yun E, Kang H, et al. IR and py/GC/MS examination of amber relics excavated from 6th century royal tomb in Korean Peninsula[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2016(165): 114-119.
    [31]
    Fischer T C, Sonibare O O, Aschauer B, et al. Amber from the Alpine Triassic of Lunz (Carnian, Austria): A classic palaeobotanical site[J]. Palaeontology, 2017, 60(5): 743-759.
    [32]
    Deviese T, Ribechini E, Castex D, et al. A multi-analytical approach using FTIR, GC/MS and Py-GC/MS revealed early evidence of embalming practices in Roman catacombs[J]. Microchemical Journal, 2017(133): 49-59.
    [33]
    Zheng D R, Chang S C, Perrichot V, et al. A Late Cretaceous amber biota from central Myanmar[J]. Nature Communications, 2018(9): 1-6.
    [34]
    Kotulova J, Starek D, Havelcova M, et al. Amber and organic matter from the late Oligocene deep-water deposits of the Central Western Carpathians (Orava-Podhale Basin)[J]. International Journal of Coal Geology, 2019(207): 96-109.
    [35]
    Umamaheswaran R, Dutta S, Kumar S. Elucidation of the macromolecular composition of fossil biopolymers using Py-GCxGC-TOFMS[J]. Organic Geochemistry 2021(151): 104 139.
    [36]
    Pastorelli G. Identification of volatile degradation products from Baltic amber by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2011, 399(3): 1 347-1 353.
    [37]
    van der Werf I D, Aresta A, Truica G I, et al. A quasi non-destructive approach for amber geological provenance assessment based on head space solid-phase microextraction gas chromatography-mass spectrometry[J]. Talanta, 2014(119): 435-439.
    [38]
    McCoy V E, Boom A, Kraemer M M S, et al. The chemistry of American and African amber, copal, and resin from the genus Hymenaea[J]. Organic Geochemistry, 2017(113): 43-54.
    [39]
    McCoy V E, Barthel H J, Boom A, et al. Volatile and semi-volatile composition of Cretaceous amber[J]. Cretaceous Research, 2021(127): 104 958.
    [40]
    陈静, 张伟, 李明明, 等. 自动索氏提取-固相萃取-气相色谱-串联质谱法测定土壤环境中5种杀螨剂的残留量[J]. 理化检验-化学分册, 2022, 58(7): 857-860.

    Chen J, Zhang W, Li M M, et al. Determination of residues of five acaricides in soil by automatic soxhlet extraction-solid phase extraction-gas chromatography-tandem mass spectrometry[J]. PTCA(PART B: Chem. Anal. ), 2022, 58(7): 857-860. (in Chinese)
    [41]
    Mazur N, Nagel M, Leppin U, et al. The extraction of fossil arthropods from Lower Eocene Cambay amber[J]. Acta Palaeontologica Polonica, 2014, 59(2): 455-459.
    [42]
    Bechtel A, Sachsenhofer R F, Gratzer R, et al. Parameters determining the carbon isotopic composition of coal and fossil wood in the Early Miocene Oberdorf lignite seam (Styrian Basin, Austria)[J]. Organic Geochemistry, 2002, 33(8): 1 001-1 024.
    [43]
    Paul S, Sharma J, Singh B D, et al. Early Eocene equatorial vegetation and depositional environment: Biomarker and palynological evidences from a lignite-bearing sequence of Cambay Basin, western India[J]. International Journal of Coal Geology, 2015(149): 77-92.
    [44]
    邱若风. 在线热辅助甲基化—气相色谱/质谱法分析食品和药品中脂肪酸组成的研究[D]. 杭州: 浙江工业大学, 2018.

    Qiu R F. Study on analsis of fatty acid composition in food and drug by gas chromatography/mass spectrometry with on -line pyrolytic methylation technique[D]. Hangzhou: Zhejiang University of Technology, 2018. (in Chinese)
    [45]
    van der Werf I D, Monno A, Fico D, et al. A multi-analytical approach for the assessment of the provenience of geological amber: The collection of the Earth Sciences Museum of Bari (Italy)[J]. Environmental Science and Pollution Research, 2017, 24(3): 2 182-2 196.
    [46]
    Yamamoto S, Otto A, Krumbiegel G, et al. The natural product biomarkers in succinite, glessite and stantienite ambers from Bitterfeld, Germany[J]. Review of Palaeobotany and Palynology, 2006, 140(1-2): 27-49.
    [47]
    Colombini M P, Modugno F. Organic mass spectrometry in art and archaeology[M]. Chichester: Wiley, 2009: 327-361.
    [48]
    Fabbri D, Chiavari G, Prati S, et al. Gas chromatography/mass spectrometric characterisation of pyrolysis/silylation products of glucose and cellulose[J]. Rapid Dommunications in Mass Spectrometry, 2002, 16(24): 2 349-2 355.
    [49]
    Pastorova I, vanderBerg K J, Boon J J, et al. Analysis of oxidised diterpenoid acids using thermally assisted methylation with TMAH[J]. Journal of Analytical and Applied Pyrolysis 1997, 43(1): 41-57.
    [50]
    Lin S Y, Dence C W. Method in lignin chemistry[M]. Heidelberg: Springer Berlin, 1992: 177-199.
    [51]
    Kaal J, Seijo M M, Oliveira C, et al. Golden artefacts, resin figurines, body adhesives and tomb sediments from the pre-Columbian burial site El Cano (Gran Cocle, Panama): Tracing organic contents using molecular archaeometry[J]. Journal of Archaeological Science, 2020(113): 105 045.
    [52]
    柘植新, 大谷肇, 渡边忠一. 聚合物的裂解气相色谱: 质谱图集[M]. 北京: 化学工业出版社2016.

    Tsuge S, Ohtani H, Watanabe C. Pyrolysis - GC/MS data book of synthetic polymers[M]. Beijing: Chemical Industry Publishing House, 2016. (in Chinese)
    [53]
    俞嘉斌, 邹波, 魏春明, 等. 全自动在线顶空固相微萃取-气相色谱-质谱联用检测水样中24种常见农药[J/OL]. 农药学学报. https://doi.org/10.16801/j.issn.1008-7303.2022.0057.

    Yu J B, Zhou B, Wei C M, et al. Detection of 24 common pesticides in water samples by automatic online HS-SPME-GC-MS[J/OL]. Chinese Journal of Pesticide Science. https://doi.org/10.16801/j.issn.1008-7303.2022.0057. (in Chinese)
    [54]
    许紫嫣. 基于多重顶空固相微萃取的浓香油脂中吡嗪类成分定量方法的建立及应用[D]. 郑州: 河南工业大学, 2021.

    Xu Z Y. The establishment and application of quantitative methods for Pyrazine in fragrant edible oil according to MHS-SPME-GC-MS[D]. Zhengzhou: Henan University of Technology, 2021. (in Chinese)
    [55]
    Shi G L, Dutta S, Paul S, et al. Terpenoid compositions and botanical origins of late Cretaceous and Miocene amber from China[J]. Plos One, 2014, 9(10): e111303.
    [56]
    Ritchie M E, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Research, 2015, 43(7): e47.
    [57]
    Beimforde C, Seyfullah L J, Perrichot V, et al. Resin exudation and resinicolous communities on Araucaria humboldtensis in New Caledonia[J]. Arthropod-Plant Interactions, 2017, 11(4): 495-505.
    [58]
    McKellar R C, Wolfe A P, Muehlenbachs K, et al. Insect outbreaks produce distinctive carbon isotope signatures in defensive resins and fossiliferous ambers[J]. Proceedings of the Royal Society B-Biological Sciences, 2011, 278(1 722): 3 219-3 224.
    [59]
    Najarro M, Peñalver E, Pérez-De La Fuente R, et al. Review of the El Soplao amber outcrop, Early Cretaceous of Cantabria, Spain[J]. Acta Geologica Sinica(English Edition), 2010, 84(4): 959-976.

Catalog

    Article Metrics

    Article views (245) PDF downloads (35) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return