Citation: | DAI Hui, HUANG Wenqing, CAO Suqiao, WANG Feng, YU Lu, ZUO Rui, GUO Lianqiao. Application of Laser Raman Spectroscopy in the Study of Inclusion[J]. Journal of Gems & Gemmology, 2022, 24(5): 146-154. DOI: 10.15964/j.cnki.027jgg.2022.05.014 |
[1] |
Neuville D R, de Ligny D, Henderson G S. Advances in Raman spectroscopy applied to earth and material sciences[J]. Reviews in Mineralogy and Geochemistry, 2014(78): 509-541.
|
[2] |
杨序纲, 吴琪琳. 拉曼光谱的分析与应用[M]. 北京: 国防工业出版社, 2008: 1-30.
Yang X G, Wu Q L. Raman spectroscopy analysis and application[M]. Beijing: National Defense Industry Press, 2008: 1-30. (in Chinese)
|
[3] |
田国辉, 陈亚杰, 冯清茂. 拉曼光谱的发展及应用[J]. 化学工程师, 2008, 22(1): 3. doi: 10.3969/j.issn.1002-1124.2008.01.013
Tian G H, Chen Y J, Feng Q M. Development and application of Raman technology[J]. Chemical Engineer, 2008, 22(1): 34-36. (in Chinese) doi: 10.3969/j.issn.1002-1124.2008.01.013
|
[4] |
潘家来. 激光拉曼光谱在有机化学上的应用[M]. 北京: 化学工业出版社, 1986: 1-5.
Pan J L. Application of laser Raman spectroscopy in organic chemistry[M]. Beijing: Chemical Industry Press, 1986: 1-5. (in Chinese)
|
[5] |
李葆华, 顾雪祥, 彭义伟, 等. 论包裹体成分-相态分类简[J]. 物探化探计算技术, 2018, 40(6): 806-811. doi: 10.3969/j.issn.1001-1749.2018.06.16
Li B H, Gu X X, Peng Y W, et al. A research on the inclusion classification by composition and phase state[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(6): 806-811. (in Chinese) doi: 10.3969/j.issn.1001-1749.2018.06.16
|
[6] |
倪培, Dubessy J, 丁英俊, 等. 低温原位拉曼光谱技术在流体包裹体研究中的应用[J]. 地学前缘, 2009, 16(1): 173-180. doi: 10.3321/j.issn:1005-2321.2009.01.020
Ni P, Dubessy J, Ding Y J, et al. Application of in-situ cryogenic Raman spectroscopic technique to fluid inclusion study[J]. Earth Science Frontiers, 2009, 16(1): 173-180. (in Chinese) doi: 10.3321/j.issn:1005-2321.2009.01.020
|
[7] |
倪培, 范宏瑞, 潘君屹, 等. 流体包裹体研究进展与展望(2011-2020)[J]. 矿物岩石地球化学通报, 2021, 40(4): 802-818. doi: 10.19658/j.issn.1007-2802.2021.40.056
Ni P, Fan H R, Pan J Q, et al. Progress and prospect of fluid inclusion research in the past decade in China(2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(4): 802-818. (in Chinese) doi: 10.19658/j.issn.1007-2802.2021.40.056
|
[8] |
卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004: 133-134.
Lu H Z, Fan H R, Ni P, et al. Fluid inclusion[M]. Beijing: Science Press, 2004: 133-134. (in Chinese)
|
[9] |
Frezzotti M L, Tecce F, Casagli A. Raman spectroscopy for fluid inclusion analysis[J]. Journal of Geochemical Exploration, 2012(112): 1-20.
|
[10] |
Hurai V, Černušák I, Randive K. Raman spectroscopic study of polysulfanes (H2Sn) in natural fluid inclusions[J]. Chemical Geology, 2018(508): 15-29.
|
[11] |
Bény C, Guilhaumou N, Touray J C. Native-sulphur-bearing fluid inclusions in the CO2-H2S-H2O-S system-Microthermometry and Raman microprobe (MOLE) analysis-Thermochemical interpretations[J]. Chemical Geology, 1982, 37(1-2): 113-127. doi: 10.1016/0009-2541(82)90071-7
|
[12] |
陈小兰, 周振柱, 韩作振, 等. 低温拉曼光谱分析流体包裹体盐度的条件约束[J]. 光谱学与光谱分析, 2017, 37(8): 2 446-2 451.
Chen X L, Zhou Z Z, Han Z Z, et al. The constraints on the method of using cryogenic Raman spectroscopy to determine the salinities of fluid inclusions[J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2 446-2 451. (in Chinese)
|
[13] |
Ni P, Pan J Y, Huang B, et al. Geology, ore-forming fluid and genesis of the Qiucun gold deposit: Implication for mineral exploration at Dehua prospecting region, SE China[J]. Journal of Geochemical Exploration, 2018(195): 3-15.
|
[14] |
Ni P, Wang G G, Yu W, et al. Evidence of fluid inclusions for two stages of fluid boiling in the formation of the giant Shapinggou porphyry Mo deposit, Dabie orogen, central China[J]. Ore Geology Reviews, 2015(65): 1 078-1 094.
|
[15] |
Huang W Q, Ni P, Zhou J G, et al. Fluid inclusion and titanite U-Pb age constraints on the Yuanjiang ruby mineralization in the Ailao Shan-Red River metamorphic belt, Southwest China[J]. The Canadian Mineralogist, 2022, 60(1): 3-28. doi: 10.3749/canmin.2100009
|
[16] |
Qin L J, Yu X Y, Guo H S. Fluid inclusion and chemical composition characteristics of emeralds from Rajasthan Area, India[J]. Minerals, 2022, 12(641): 1-20.
|
[17] |
张鼐. 含油气盆地流体包裹体分析技术及应用[M]. 北京: 石油工业出版社, 2016: 1-299.
Zhang N. Fluid inclusion analysis technology and application in petroliferous basin[M]. Beijing: Petroleum Industry Press, 2016: 1-299. (in Chinese)
|
[18] |
王飞宇, 冯伟平, 关晶, 等. 含油气盆地流体包裹体分析的关键问题和意义[J]. 矿物岩石地球化学通报, 2018, 37(3): 441-450. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201803005.htm
Wang F Y, Feng W P, Guang J, et al. Key questions of the fluid inclusion analysis in petroliferous basins and their significances[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(3): 441-450. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201803005.htm
|
[19] |
李佳佳, 李荣西, 董会, 等. 应用显微激光拉曼光谱测定CO2气体碳同位素值δ13C的定量方法研究[J]. 光谱学与光谱分析, 2017, 37(4): 1 139-1 144.
Li J J, Li R X, Dong H, et al. Quantitative approach to determination of δ13C value of CO2 with micro-laser Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1 139-1 144. (in Chinese)
|
[20] |
Chen Q, Zhang Z, Wang Z, et al. In situ Raman spectroscopic study of nitrogen speciation in aqueous fluids under pressure[J]. Chemical Geology, 2018(506): 51-57.
|
[21] |
Shang L, Chou I M, Burruss R C, et al. Raman spectroscopic characterization of CH4 density over a wide range of temperature and pressure[J]. Journal of Raman Spectroscopy, 2014, 45(8): 696-702. doi: 10.1002/jrs.4529
|
[22] |
王志海, 叶美芳, 董会, 等. 流体包裹体盐度低温拉曼光谱测定方法研究[J]. 岩矿测试, 2014, 33(6): 813-821. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201406010.htm
Wang Z H, Ye M F, Dong H, et al. Study on salinity determination of fluid inclusions by cryogenic Raman spectroscopy[J]. Rock and Mineral Analysis, 2014, 33(6): 813-821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201406010.htm
|
[23] |
Dubessy J, Audeoud D, Wilkins R, et al. The use of the Raman microprobe MOLE in the determination of the electrolytes dissolved in the aqueous phase of fluid inclusions[J]. Chemical Geology, 1982, 37(1-2): 137-150. doi: 10.1016/0009-2541(82)90073-0
|
[24] |
Samson I M, Walker R T. Cryogenic Raman spectroscopic studies in the system NaCl-CaCl2-H2O and implications for low-temperature phase behavior in aqueous fluid inclusion[J]. The Canadian Mineralogist, 2000(38): 35-43.
|
[25] |
倪培, 丁俊英, 饶冰. 人工合成H2O及NaCl-H2O体系流体包裹体低温原位拉曼光谱研究[J]. 科学通报, 2006, 51(9): 1 073-1 078. doi: 10.3321/j.issn:0023-074X.2006.09.012
Ni P, Ding J Y, Rao B. Low temperature in situ Raman spectroscopy of fluid inclusions in synthetic H2O and NaCl-H2O systems[J]. Chinese Science Bulletin, 2006, 51(9): 1 073-1 078. (in Chinese) doi: 10.3321/j.issn:0023-074X.2006.09.012
|
[26] |
王蝶, 卢焕章, 单强. 岩浆熔体包裹体研究进展[J]. 岩石学报, 2017, 33(2): 14.
Wang D, Lu H Z, Shan Q. Advances on melt inclusion studies[J]. Acta Petrologica Sinica, 2017, 33(2): 14. (in Chinese)
|
[27] |
Sorby H C. On the microscopical, structure of crystals, indicating the origin of minerals and rocks[J]. Quarterly Journal of the Geological Society, 1858, 14(1-2): 453-500. doi: 10.1144/GSL.JGS.1858.014.01-02.44
|
[28] |
Roedder E. Origin and significance of magmatic inclusions[J]. Bulletin de Mineralogie, 1979, 102(5): 487-510. doi: 10.3406/bulmi.1979.7299
|
[29] |
Qin Z W, Lu F Q, Anderson A T. Diffusive reequilibration of melt and fluid inclusions[J]. American Mineralogist, 1992, 77 (5-6): 565-576.
|
[30] |
Laurent O, Björnsen J, Wotzlaw J F, et al. Earth's earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions[J]. Nature Geoscience, 2020, 13(2): 163-169. doi: 10.1038/s41561-019-0520-6
|
[31] |
Grondahl C, Zajacz Z. Magmatic controls on the genesis of porphyry Cu-Mo-Au deposits: The bingham canyon example[J]. Earth and Planetary Science Letters, 2017(480): 53-65.
|
[32] |
赵劲松, 赵斌, 李建威, 等. 矽卡岩岩浆对中国北方某些矽卡岩型矿床形成的制约—来自包裹体激光拉曼分析证据[J]. 岩石学报, 2015, 31(4): 1 079-1 088. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201504015.htm
Zhao J S, Zhao B, Li J W, et al. Magma control of magmatic skarn to the formation of some deposits of skarn type: Evidence from laser Raman analyses of inclusions in minerals[J]. Acta Petrologica Sinica, 2015, 31(4): 1 079-1 088. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201504015.htm
|
[33] |
赵斌, 赵劲松, 许德如. 长江中下游成矿带矽卡岩型矿床矿物包裹体激光拉曼分析结果及其地质-地球化学意义[J]. 岩石学报, 2017, 33(6): 1 841-1 858.
Zhao B, Zhao J S, Xu D R. Laser Raman analysis results of mineral inclusions from deposit of skarn type distributed in the middle and lower reaches metallogenic belt of Yangtze River, China and their geological-geochemical significance[J]. Acta Petrologica Sinica, 2017, 33(6): 1 841-1 858. (in Chinese)
|
[34] |
Mernagh T P, Kamenetsky V S, Kamenetsky M B. A Raman microprobe study of melt inclusions in kimberlites from Siberia, Canada, SW Greenland and South Africa[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2011, 80(1): 82-87. doi: 10.1016/j.saa.2011.01.034
|
[35] |
Gaetani G A, Grove T L. The influence of water on melting of mantle peridotite[J]. Contributions to Mineralogy & Petrology, 1998, 131(4): 323-346.
|
[36] |
Asimow P D, Langmuir C H. The importance of water to oceanic mantle melting regimes[J]. Nature, 2003(421): 815-820.
|
[37] |
Asimow P D, Dixon J E, Langmuir C H. A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the mid-atlantic ridge near the Azores[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(1): 1-24.
|
[38] |
Thomas R, Kamenetsky V S, Davidson P. Laser Raman spectroscopic measurements of water in unexposed glass inclusions[J]. American Mineralogist, 2006(91): 467-470.
|
[39] |
Aster E M, Wallace P J, Moore L R, et al. Reconstructing CO2 concentrations in basaltic melt inclusions using Raman analysis of vapor bubbles[J]. Journal of Volcanology & Geothermal Research, 2016(323): 148-162.
|
[40] |
Hanyu T, Yamamoto J, Kimoto K, et al. Determination of total CO2 in melt inclusions with shrinkage bubbles[J]. Chemical Geology, 2020(557): 1-12.
|
[41] |
殷莉, 张瑞生, 郑建平. 金刚石包裹体矿物化学特征与华北东部克拉通岩石圈地幔属性[J]. 地质科技情报, 2008, 27(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200805005.htm
Yin L, Zhang R S, Zheng J P. Mineral chemistry characters of diamond inclusions and the nature of the lithospheric mantle beneath the eastern north China craton[J]. Geological Science and Technology Information, 2008, 27(5): 21-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200805005.htm
|
[42] |
高晓英, 李姝宁, 郑永飞. 超高压变质矿物中的多相固体包裹体研究进展[J]. 岩石学报, 2011, 27(2): 469-489. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102009.htm
Gao X Y, Li S N, Zheng Y F. On the study multiphase solid inclusions in UHP metamorphic minerals[J]. Acta Petrologica Sinica, 2011, 27(2): 469-489. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102009.htm
|
[43] |
徐树桐, 苏文, 刘贻灿, 等. 大别山东段高压变质岩中的金刚石[J]. 科学通报, 1991(17): 1 318-1 321. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199117011.htm
Xu S T, Su W, Liu Y C, et al. Diamond in high pressure metamorphic rocks in the eastern Dabie mountains[J]. Chinese Science Bulletin, 1991(17): 1 318-1 321. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199117011.htm
|
[44] |
徐树桐, 刘贻灿, 陈冠宝, 等. 大别山、苏鲁地区榴辉岩中新发现的微粒金刚石[J]. 科学通报, 2003(10): 1 069-1 075. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200310016.htm
Xu S T, Liu Y C, Chen G B, et al. Newly discovered particulate diamond in eclogite from Dabie mountain and Sulu area[J]. Chinese Science Bulletin, 2003(10): 1 069-1 075. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200310016.htm
|
[45] |
刘景波, 叶凯, 从柏林, 等. 大别山超高压变质带片麻岩锆石中重晶石和硬石膏包裹体及其意义[J]. 岩石学报, 2000, 16(4): 482-484. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200004002.htm
Liu J B, Ye K, Cong B L, et al. The barite and anhydrite inclusions in zircon of gneisses from ultra-high pressure metamorphic zone of the Dabie mountains and their implications[J]. Acta Petrologica Sinica, 2000, 16(4): 482-484. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200004002.htm
|
[46] |
Meyer H O A. Inclusions in diamond[M] // Nixon P H. Mantle xenoliths. New York: John Wiley and Sons Ltd., 1987: 501-522.
|
[47] |
Richardson S H, Gurney J J, Erlank A J, et al. Origin of diamonds in old enriched mantle[J]. Nature, 1984(310): 198-202.
|
[48] |
Lorenzon S, Novella D, Nimis P, et al. Ringwoodite and zirconia inclusions indicate downward travel of super-deep diamonds[J]. Geology, 2022, 50(9): 996-1 000.
|
[49] |
丘志力, 王琦, 秦社彩, 等. 湖南砂矿金刚石包裹体原位测试: 对金刚石成因来源的启示[J]. 大地构造与成矿学, 2014, 38(3): 590-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201403010.htm
Qiu Z L, Wang Q, Qin S C, et al. In-situ analysis of mineral inclusions in alluvial diamonds from Hunan: Insights into the provenance and origin of the diamonds[J]. Geotectonica et Metallogenia, 2014, 38(3): 590-597. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201403010.htm
|
[50] |
Alvaro M, Mazzucchelli M L, Angel R J, et al. Fossil subduction recorded by quartz from the coesite stability field[J]. Geology, 2019, 48(1): 1-5.
|
[51] |
Izraeli E S, Harris J W, Navon O. Raman barometry of diamond formation[J]. Earth & Planetary Science Letters, 1999, 173(3): 351-360.
|
[52] |
高晓英, 夏梅, 周善勇, 等. 矿物包裹体弹性拉曼频移温压计原理及其地质应用[J]. 岩石学报, 2021, 37(4): 974-984.
Gao X Y, Xia M, Zhou S Y, et al. Principle and geological applicability of the Raman elastic geothermobarometry for mineral inclusion systems[J]. Acta Petrologica Sinica, 2021, 37(4): 974-984. (in Chinese)
|
[53] |
Hemley R J. Pressure dependence of Raman spectra of SiO2 polymorphs: A-quartz, coesite, and stishovite[J]. High-pressure Research in Mineral Physics, 1987: 347-359.
|
[54] |
Schmidt C, Ziemann M A. In-situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures[J]. American Mineralogist, 2000(85): 1 725-1 734.
|
[55] |
Yamamoto J, Kagi H, Kaneoka I, et al. Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology of mantle minerals: Implications for the geobarometry of mantle minerals using micro-Raman spectroscopy[J]. Earth and Planetary Science Letters, 2002(198): 511-519.
|
[56] |
Zhong X, Moulas E, Tajčmanová L. Tiny timekeepers witnessing high-rate exhumation processes[J]. Scientific Reports, 2018, 8(2 234): 1-9.
|
[57] |
Noguchi N, Abduriyim A, Shimizu I, et al. Imaging of internal stress around a mineral inclusion in a sapphire crystal: Application of micro-Raman and photoluminescence spectroscopy[J]. Journal of Raman Spectroscopy, 2013(44): 147-154.
|
[58] |
叶旭, 丘志力, 陈超洋, 等. 拉曼面扫描无损鉴定矿物包裹体: 以彩虹方柱石中的磁铁矿包裹体为例[J]. 光谱学与光谱分析, 2021, 41(7): 2 105-2 109.
Ye X, Qiu Z L, Chen C Y, et al. Nondestructive identification of mineral inclusions by Raman mapping: Micro-magnetite inclusions in iridescent scapolite as example[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2 105-2 109. (in Chinese)
|
[59] |
Ulanski J, Pastorczak M. Confocal Raman microscopy in 3-dimensional shape and composition determination of heterogeneous systems[J]. Journal of Molecular Structure, 2005(744-747): 997-1 003.
|
[60] |
Schiavi F, Bolfan-Casanova N, Buso R, et al. Quantifying magmatic volatiles by Raman microtomography of glass inclusion-hosted bubbles[J]. Geochemical Perspectives Letters, 2020(16): 17-24.
|