Citation: | BAI Yulin, LIU Xianyu, TU Cai, GONG Xue, CHEN Quanli. Gemmological and Spectroscopic Characteristics of Grandidierite from Madagascar[J]. Journal of Gems & Gemmology, 2024, 26(6): 15-24. DOI: 10.15964/j.cnki.027jgg.2024.06.002 |
Grandidierite is an extremely rare aluminum borosilicate. Due to the limitation of producing area and yield, there are few studies on its spectral characterization and colour formation mechanism. In this paper, the gemmological characteristics, chemical compositions and spectral characteristics of gem-quality grandidierites from Madagascar have been studied in detail using conventional gemmological testing methods, electron microprobe, UV-Vis spectrometer, Fourier transform infrared spectrometer and laser Raman spectrometer. Chemical composition analysis showed that the samples contains trace elements such as Ca, Mn, Cr, Ti and Zn in addition to the main elements Al, Si, Mg and Fe, and the average content of FeOT of light and dark samples is 0.63% and 1.29%, respectively, X(X=wFe/w(Fe + Mg)) is 0.024 and 0.049, respectively. With the higher value of the X-ratio, the higher the saturation of the colour, and the intensity of the polychromaticity and the polychromatic hue gradually deepened, the refractive index value is positively correlated with X. The characteristic absorption peaks in the UV-Vis spectra of grandidierite at 387 nm and 443 nm are due to the d—d leap 6A1→T2(4D) and the spin-barrier leap 6A1→(4A1g, 4Eg) of the Fe3+ ion in the octahedral crystal field, respectively, ⅤFe2+ in the triangular bipyramidal structure resembles the distorted octahedral coordination field, so 458 nm is associated with the spin-barrier leap 5T2g→3T2g for the VFe2+ "five-state" (6D) and "three-state" (3H) splitting terms, and 477 nm is associated with the d—d leap of VFe2+ ions, 515 nm is caused by the spin-barrier leap of VIFe2+ in the octahedral crystal field, 746, 771, 797 nm and 823 nm absorption peaks may be associated with the Fe2+/Fe3+ IVCT between Fe3+ and VFe2+ ions. The infrared spectra test results show that the infrared absorption peaks at 400-500 cm-1 and 630-800 cm-1 are the ν4 and ν3 vibrations of [AlO5]+[AlO6], respectively; the absorption at 530-630 cm-1 belongs to the ν4 vibration of [SiO4]; the absorption at 800-1 100 cm-1 is due to the asymmetric stretching vibration of the silica-oxygen backbone Si-O-Si and the absorption of boron oxygen; the absorption bands of 1 300-1 500 cm-1 belong to the ν3 vibration of [BO3]; 3 400-4 200 cm-1 is related to lattice vibration of OH. Raman spectra 1 300-1 500 cm-1 Raman shift is the ν3 antisymmetric stretching vibration of [BO3].
[1] |
Mitchell R K. African grossular garnets; blue topaz; cobalt spinel; and grandidierite[J]. The Journal of Gemmology, 1977, 15(7): 354-358. doi: 10.15506/JoG.1977.15.7.354
|
[2] |
Dzikowski T J, Groat L A, Grew E S. The geometric effects of VFe2+ for VMg substitution on the crystal structures of the grandidierite-ominelite series[J]. American Mineralogist, 2007, 92(5-6): 863-872. doi: 10.2138/am.2007.2275
|
[3] |
孙宁岳, 李耿, 李星杞, 等. 马达加斯加硅硼镁铝石的宝石学特征[J]. 宝石和宝石学杂志(中英文), 2019, 21(3): 37-41.
Sun N, Li G, Li X Q, et al. Gemmological characteristic of grandidierite from Madagascar[J]. Journal of Gems & Gemmology, 2019, 21(3): 37-41. (in Chinese)
|
[4] |
Laurs B M. Grandidierite from Madagascar showing sheen and chatoyancy[J]. The Journal of Gemmology, 2021, 37(6): 566-567. doi: 10.15506/JoG.2021.37.6.566
|
[5] |
Bupparenoo P, Maneekrajangsaeng M. Gem-quality grandidierte from Madagascar[J]. Gem and Jewelry Institute of Thailand, 2017(1): 1-8.
|
[6] |
Knorring O V, Sahama T G, Lehtinen M. A note on grandidierite from Fort Dauphin, Madagascar[J]. Bulletin of the Geological Society of Finland, 1969(41): 71-74.
|
[7] |
Van Bergen M J. Grandidierite from aluminous metasedimentary xenoliths within acid volcanics, a first record in Italy[J]. Mineralogical Magazine, 1980, 43(329): 651-658. doi: 10.1180/minmag.1980.043.329.15
|
[8] |
Grew E S. A grandidierite-sapphirine association from India[J]. Mineralogical Magazine, 1983, 47(344): 401-403. doi: 10.1180/minmag.1983.047.344.20
|
[9] |
Hero R, Windley B, Ackermand D. Grandidierite from a pelitic xenolith in the Haddo House complex, NE Scotland[J]. Mineralogical Magazine, 1984, 48(348): 401-406. doi: 10.1180/minmag.1984.048.348.11
|
[10] |
Nicollet C. Occurrences of grandidierite, serendibite and tourmaline near Ihosy, Southern Madagascar[J]. Mineralogical Magazine, 1990, 54(374): 131-133. doi: 10.1180/minmag.1990.054.374.16
|
[11] |
Black P M. Grandidierite from Cuvier Island, New Zealand[J]. Mineralogical Magazine, 1970, 37(289): 615-617. doi: 10.1180/minmag.1970.037.289.12
|
[12] |
Schmetzer K, Burford M, Kiefert L, et al. The first transparent faceted grandidierite, from Sri Lanka[J]. Gems & Gemology, 2003, 39(1): 32-37.
|
[13] |
McKie D. The magnesium aluminium borosilicates: Kornerupine and grandidierite[J]. Mineralogical Magazine and Journal of the Mineralogical Society, 1965, 34(268): 346-357. doi: 10.1180/minmag.1965.034.268.29
|
[14] |
Lacroix A. Sur la grandidiérite[J]. Bulletin de Minéralogie, 1904, 27(9): 259-265.
|
[15] |
Hiroi Y, Grew E S, Motoyoshi Y, et al. Ominelite, (Fe, Mg) Al3BSiO9 (Fe2+ analogue of grandidierite), a new mineral from porphyritic granite in Japan[J]. American Mineralogist, 2002, 87(1): 160-170. doi: 10.2138/am-2002-0117
|
[16] |
Seifert F, Olesch M. Mossbauer spectroscopy of grandidierite, (Mg, Fe) Al3SiO9[J]. American Mineralogist, 1977, 62(5-6): 547-553.
|
[17] |
Qiu Z M, Rang M, Chang J T, et al. Mossbaure spectra of grandidierite[J]. Chinese Science Bulletin: English Edition, 1990, 35(1): 43-47.
|
[18] |
徐娅芬, 狄敬如, 方菲. 澳大利亚蓝宝石的宝石学和谱学特征[J]. 宝石和宝石学杂志(中英文), 2019, 21(2): 24-33.
Xu Y F, Di J R, Fang F. Gemmological and spectroscopic characteristics of Australian sapphires[J]. Journal of Gems & Gemmology, 2019, 21(2): 24-33. (in Chinese)
|
[19] |
Karr C. Infrared and Raman spectroscopy of lunar and terrestrial minerals[M]. New York: Academic Press, 1975: 1-164.
|
[20] |
Klima R L, Pieters C M, Dyar M D. Spectroscopy of synth etic Mg-Fe pyroxenes I: Spin-allowed and spin-forbidden crystal field bands in the visible and near-infrared[J]. Meteoritics & Planetary Science, 2007, 42(2): 235-253.
|
[21] |
Avram N M, Brick M G. Optical properties of 3d-ions in crystals[M]. Beijing: Tsinghua University Press, 2013: 70-198.
|
[22] |
Rossman G R, Taran M N. Spectroscopic standards for four- and fivefold-coordinated Fe2+ in oxygen-based minerals[J]. American Mineralogist, 2001, 86(7-8): 896-903.
|
[23] |
Povarennykh A S. Spectres infrarouges de certains minéraux de Madagascar[J]. Bulletin de Minéralogie, 1970, 93(2): 224-234.
|
[24] |
申晓萍, 汪立今, 宋松山, 等. 新疆南天山红柱石化学成分及谱学特征研究[J]. 地球学报, 2007, 28(4): 349-355.
Shen X P, Wang L J, Song S S, et al. A study of chemical composition and spectra of andalusite in South Tianshan Mountains, Xinjiang[J]. Journal of Earth Sciences, 2007, 28(4): 349-355. (in Chinese)
|
[25] |
Fisch M, Armbruster T, Rentsch D, et al. Crystal-chemistry of mullite-type aluminoborates Al18B4O33 and Al5BO9: A stoichiometry puzzle[J]. Journal of Solid State Chemistry, 2011, 184(1): 70-80.
|
[26] |
Guo H, Yu X, Zheng Y, et al. Inclusion and trace element characteristics of emeralds from Swat Valley, Pakistan[J]. Gems & Gemology, 2020, 56(3): 336-355.
|
[27] |
Aines R D, Rossman G R. Relationships between radiation damage and trace water in zircon, quartz, and topaz[J]. American Mineralogist, 1986, 71(9-10): 1 186-1 193.
|
[28] |
Keppler H, Smyth J R. Water in nominally anhydrous minerals[M]. Mineralogical Society of Americ, 2018: 129-178.
|
[29] |
廖秦镜, 黄伟志, 张倩, 等. 莫桑比克棕黄色碧玺的宝石学及光谱学表征[J]. 光谱学与光谱分析, 2019, 39(12): 3 844-3 848.
Liao Q J, Huang W Z, Zhang Q, et al. Gemological and spectroscopic characterisation of brownish yellow tourmaline from Mozambique[J]. Spectroscopy and Spectral Analysis, 2019, 39(12): 3 844-3 848. (in Chinese)
|
[30] |
Frost R L, Xi Y, Scholz R, et al. Thermal analysis and vibrational spectroscopic characterization of the boro silicate mineral datolite-CaBSiO4(OH)[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013(115): 376-381.
|
[31] |
Frost R L, Bouzaid J M, Martens W N, et al. Raman spectroscopy of the borosilicate mineral ferroaxinite[J]. Journal of Raman Spectroscopy, 2007, 38(2): 135-141.
|
[32] |
Bruyère D, Delor C, Raoul J, et al. A new deposit of gem-quality grandidierite in Madagascar[J]. Gems & Gemology, 2016, 52(3): 266-275.
|
[33] |
彭卓伦, 彭明生. 复合矿的矿物学特征初步研究[J]. 矿物岩石地球化学通报, 1999(4): 320-321.
Peng Z L, Peng M S. Preliminary studies of mineralogical characters of grandidierite[J]. Journal of Mineral and Rock Geochemistry, 1999(4): 320-321. (in Chinese)
|
[34] |
Beran A, Libowitzky E. IR spectroscopic characterization of OH defects in mineral phases[J]. Phase Transitions: A Multinational Journal, 2003, 76(1-2): 1-15.
|
[35] |
Libowitzky E, Beran A. The structure of hydrous species in nominally anhydrous minerals: Information from polarized IR spectroscopy[J]. Reviews in Mineralogy and Geochemistry, 2006, 62(1): 29-52.
|
[1] | Jiajia ZHANG, Wenxiu YU, Ke XU. Application of Chinese Pavilion and Terrace Element in Jewelry Design[J]. Journal of Gems & Gemmology, 2020, 22(5): 70-74. DOI: 10.15964/j.cnki.027jgg.2020.05.010 |
[2] | Yue ZHANG, Juzi LI. Exploration of Childlike Jewelry Design[J]. Journal of Gems & Gemmology, 2020, 22(3): 47-58. DOI: 10.15964/j.cnki.027jgg.2020.03.006 |
[3] | Yihang ZOU, Zongrui ZHANG, Zhenjiang YU, Kai REN. Reuse of Waste in Jewelry Design[J]. Journal of Gems & Gemmology, 2020, 22(2): 55-60. DOI: 10.15964/j.cnki.027jgg.2020.02.007 |
[4] | SU Xiaoyu. Re-Expression of Emotion Focused Jewelry Design[J]. Journal of Gems & Gemmology, 2019, 21(S1): 136-142. DOI: 10.15964/j.cnki.027jgg.2019.S1.036 |
[5] | ZHANG Yue, LI Juzi. Childishness Explore of Jewelry Design[J]. Journal of Gems & Gemmology, 2019, 21(S1): 119-121. DOI: 10.15964/j.cnki.027jgg.2019.S1.033 |
[6] | LI Yuan, WEN Hai, ZHANG Xue. Application of ZBrush in Computer Jewelry Design[J]. Journal of Gems & Gemmology, 2017, 19(1): 48-53. DOI: 10.15964/j.cnki.027jgg.2017.01.008 |
[7] | TIAN Bingrui, HUANG Lin, FANG Xiu. Application of Funny Animal Features and Jewelry Design[J]. Journal of Gems & Gemmology, 2014, 16(4): 82-88. |
[8] | LIAO Wang-chun. A Preliminary Study on Jewelry Design Language[J]. Journal of Gems & Gemmology, 2006, 8(4): 39-42. |
[9] | LUO Ze-min, CHEN Ying, CENG Xiang-han, ZHANG Rong-hong, CHEN Jing-zhong. Application of Fractal Geometry in Jewelry Design[J]. Journal of Gems & Gemmology, 2006, 8(2): 41-44. |
[10] | WANG Xiao-hui, CAI Ke-qin. Conception of Olympic Jewelry Design: Chinese Seal and Jewelry[J]. Journal of Gems & Gemmology, 2005, 7(4): 35-37. |