QU Mengwen, ZHONG Yuan, Andy Hsitien Shen. Gemmological Characteristic of Purple-Brownish Red Garnet from Zambia[J]. Journal of Gems & Gemmology, 2021, 23(4): 20-28. DOI: 10.15964/j.cnki.027jgg.2021.04.003
Citation:
QU Mengwen, ZHONG Yuan, Andy Hsitien Shen. Gemmological Characteristic of Purple-Brownish Red Garnet from Zambia[J]. Journal of Gems & Gemmology, 2021, 23(4): 20-28. DOI: 10.15964/j.cnki.027jgg.2021.04.003
QU Mengwen, ZHONG Yuan, Andy Hsitien Shen. Gemmological Characteristic of Purple-Brownish Red Garnet from Zambia[J]. Journal of Gems & Gemmology, 2021, 23(4): 20-28. DOI: 10.15964/j.cnki.027jgg.2021.04.003
Citation:
QU Mengwen, ZHONG Yuan, Andy Hsitien Shen. Gemmological Characteristic of Purple-Brownish Red Garnet from Zambia[J]. Journal of Gems & Gemmology, 2021, 23(4): 20-28. DOI: 10.15964/j.cnki.027jgg.2021.04.003
The Magodi mining area in Zambia is a new source of purple-brownish red garnets, but there are only a few studies on this locality. In this paper, the garnets from Zambia were systematically studied by conventional gemmological tests, electron probe micro-analysis (EPMA), Raman spectrometer (Raman) and ultraviolet-visible absorption spectrometer (UV-Vis). The refractive index of garnets from Zambia is about 1.750-1.772, and the relative density is about 3.77-3.92. The garnets correspond to the almandine-pyrope series, which contain minor mineral components like grossularite and spessartite. Besides, inclusions are rich in variety, such as transparent euhedral to semi-euhedral mineral inclusions, round ablation inclusions, dense rod or granular inclusions, long needle-like inclusions with parallel arrangement, "fingerprint-like" healed fractures, etc. Raman spectra showed that the mineral inclusions include rutile, zircon and anatase. The ultraviolet-visible absorption spectra are mainly related to the transition of d-d orbitals of Fe2+, Fe3+ and Mn2+ ions. High content of Fe2+ produces the main absorption in yellow-green spectrum region, leading to higher transmittance in red region and blue-violet region, which mix into the purple hue of some samples. The other samples with brownish-red hue produce stronger absorptions at 368 nm and 425 nm that related to Fe3+ than the purple samples, which decreases the transmission of blue and violet light, thus relatively more light transmits through the red region, causing the brownish-red hue. The chemical composition, absorption spectrum and inclusions characteristics provide references for studying the deposit genesis and geological background of garnets from Zambia, as well as the basis for determination of provenance.
热重及差热分析(thermogravimetric analysis and differential scanning calorimetry,TGA-DSC)是石化树脂(琥珀及柯巴树脂)研究中常用的方法,多用于研究树脂的石化过程,对鉴定石化树脂的成熟度[16],阐明石化树脂成岩过程[17],以及确定石化树脂的古植物学起源[18]有重要作用。在前人[19]的研究中,石化树脂的成熟度与玻璃化转变温度(glass transition temperature,Tg)之间存在相关性,该现象在半石化的柯巴树脂更为明显。这是由于Tg与聚合物的交联程度有关,随着石化树脂成熟的增加,对应交联程度更高,Tg也相应增加[17]。另外,热脱附色谱质谱分析(thermal desorption gas chromatography mass spectrometry,TD-GC/MS)作为一种针对挥发份的成分分析方法在琥珀研究中有初步尝试。Virgolici等[20-21]利用TD-GC/MS方法分析了出产于罗马尼亚和波罗的海的琥珀,发现通过主成分分析中挥发份成分可以将二者区分。TD-GC/MS是指在样品管中通入惰性载气流的条件下,加热样品管到设定的温度,使样品中的挥发份或半挥发份得以脱附或分离,随后这些挥发份或半挥发份随载气进入色谱质谱分析仪器。在本研究中除探索老化过程中挥发性成分变化以外,还可发现因老化降解生成的小分子物质。
Figure
3.
The cracks in moderately aged (MA) and seriously aged (SA) bloodish amber from Myanmar (the yellow dotted line represented the distribution of the main cracks)
Figure
5.
The total ion chromatograms of the bloodish amber samples from Myanmar with different ageing degree by TD-GC/MS analysis, and the corresponding compounds of the peaks
Hollis J D, Sutherland F L, Pogson R E. High pressure minerals and the origin of the Tertiary Breccia Pipe, Ballogie gem mine, near Proston, Queensland[J]. Records of the Australian Museum, 1983(35): 181-194.
Larsen R B, Eide E A, Burke E A J. Evolution of metamorphic volatiles during exhumation of microdiamond-bearing granulites in the Western Gneiss Region, Norway[J]. Contributions to Mineralogy and Petrology, 1998, 133(1-2): 106-121. doi: 10.1007/s004100050441
[6]
Obata M. Material transfer and local equilibria in a zoned kelyphite from a garnet pyroxenite, Ronda, Spain[J]. Journal of Petrology, 1994, 35(1): 271-287. doi: 10.1093/petrology/35.1.271
[7]
O'Brien P J, Rötzler J. High-pressure granulites: formation, recovery of peak conditions and implications for tectonics[J]. Journal of Metamorphic Geology, 2003, 21(1): 3-20. doi: 10.1046/j.1525-1314.2003.00420.x
[8]
Ague J J, Eckert Jr J O. Precipitation of rutile and ilmenite needles in garnet: Implications for extreme metamorphic conditions in the Acadian Orogen, USA[J]. American Mineralogist, 2012, 97(5-6): 840-855. doi: 10.2138/am.2012.4015
Taran M N, Dyar M D, Matsyuk S S. Optical absorption study of natural garnets of almandine-skiagite composition showing intervalence Fe2++Fe3+ → Fe3++Fe2+ charge-transfer transition[J]. American Mineralogist, 2007, 92(5-6): 753-760. doi: 10.2138/am.2007.2163
[14]
Manning P G. The optical absorption spectra of some andradites and the identification of the 6A1 → 4A14E(G) transition in octahedrally bonded Fe3+[J]. Canadian Journal of Earth Sciences, 1967, 4(6): 1 039-1 047. doi: 10.1139/e67-070
[15]
Krambrock K, Guimarães F S, Pinheiro M V B, et al. Purplish-red almandine garnets with alexandrite-like effect: Causes of colors and color-enhancing treatments[J]. Physics and Chemistry of Minerals, 2013, 40(7): 555-562. doi: 10.1007/s00269-013-0592-6