XIE Xin, DI Jingru, WU Xiaobing. Type of Amber from Myanmar and Its Gemmological Characteristic[J]. Journal of Gems & Gemmology, 2017, 19(5): 48-59. DOI: 10.15964/j.cnki.027jgg.2017.05.006
Citation: XIE Xin, DI Jingru, WU Xiaobing. Type of Amber from Myanmar and Its Gemmological Characteristic[J]. Journal of Gems & Gemmology, 2017, 19(5): 48-59. DOI: 10.15964/j.cnki.027jgg.2017.05.006

Type of Amber from Myanmar and Its Gemmological Characteristic

More Information
  • Received Date: April 13, 2017
  • In this paper, common ambers from Myanmar in Tengchong market, Yunnan Province, were chosen as the research objects.The gemmological characteristics, inclusion features and infrared spectra of ambers from Myanmar were tested and analyzed.The results showed that amber samples from Myanmar appeared the phenomena of anomalous extinction under the polariscope, and the specific gravity ranges from 1.020 to 1.050.However, the specific gravity of plant amber, blood amber and black amber is respectively 1.064, 1.084, 1.109, significantly larger than that of the other types.Most of amber samples from Myanmar generally release strong blue or blue purple fluorescence under long wave ultraviolet light, and weak fluorescence or none fluorescence under short wave ultraviolet light.Whereas, under long wave ultraviolet light, black tea amber shows purple pink fluorescence, and blood amber and black amber show khaki fluorescence.A wide range of inclusions existed in ambers from Myanmar, such as cracks, rhyotaxitic, gas-liquid two-phase inclusions.And the rhyotaxitic inclusions in ambers from Myanmar have a signification effect in identifieation of origin.The infrared spectrum test results demonstrate that the characteristic absorption peaks in infrared spectra of ambers from Myanmar are four main absorption peaks within 1 300~1 000 cm-1.The intensity of absorption peak at 1 142 cm-1 is the largest one, and the peak at 1 224 cm-1 is the second largest one, and the intensity of absorption peak at 1 090 cm-1 and 1 031 cm-1 are weak.
  • [1]
    黄睿, 邢秋雨, 祖恩东.缅甸琥珀的化学成分分析[J].桂林理工大学学报, 2015, 35(3):497-500.
    [2]
    边昭明.缅甸琥珀的宝石学特征分析[J].中国宝玉石, 2014(B05):158-165.
    [3]
    Xing L, Mckellar R C, Wang M, et al.Mummified precocial bird wings in mid-Cretaceous Burmese amber[J].Nature Communications, 2016, 7(7):12089.
    [4]
    Xing L, Mckellar R C, Xu X, et al.A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber[J].Current Biology Cb, 2016, 26(24):3352.
    [5]
    Liu X, Zhang W, Winterton S L, et al.Early morphological specialization for insect-spider associations in Mesozoic Lacewings.[J].Current Biology Cb, 2016, 26(12):1590-1594.
    [6]
    Cai C, Leschen R A B, Hibbett D S, at al.Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous[J].Nature Communications, 2017, (8):14894.
    [7]
    王博, 张海春, 张青青, 等.白垩纪缅甸琥珀生物群:百年回顾与展望[A].中国古生物学会第28届学术年会论文摘要集[C].沈阳:中国古生物学会, 2015.
    [8]
    王妍, 施光海, 师伟, 等.三大产地(波罗的海、多米尼加和缅甸)琥珀红外光谱鉴别特征[J].光谱学与光谱分析, 2015(8):2164-2169.
    [9]
    董雅洁.几种不同产地琥珀及其仿制品的宝石学和谱学特征研究[D].北京:中国地质大学, 2013.
    [10]
    邢莹莹, 亓利剑, 麦义城, 等.不同产地琥珀FTIR和-13C NMR谱学表征及意义[J].宝石和宝石学杂志, 2015, 17(2):8-16.
    [11]
    Girard V, Néraudeau D, Adl S M, et al.Protist-like inclusions in amber, as evidenced by Charentes amber[J].European Journal of Protistology, 2011, 47(2):59-66.
    [12]
    李滨阳, 周瑶琪, 钟建华, 等.利用琥珀气体包裹体判断古大气成分方法研究[J].岩矿测试, 2004, 19(3):161-168.
    [13]
    郭明霞, 杨海东.缅甸琥珀内含物形态结构在X射线下的可辨识性[J].Acta Entomologica Sinica, 2016, 59(9): 1013-1020.
    [14]
    殷宗军, 朱茂炎, 肖体乔.同步辐射X射线相衬显微CT在古生物学中的应用[J].物理, 2009, 38(7):504-510.
    [15]
    张志清, 林庆春, 沈锡田.缅甸康地翳珀的氧含量变化特征[J].宝石和宝石学杂志, 2017, 18(1):17-21.
    [16]
    张蓓莉.系统宝石学[M].北京:地质出版社, 1997.
    [17]
    谢祖宏, 唐雪莲, 李剑, 等.缅甸琥珀不同品种的红外光谱特征[J].超硬材料工程, 2013(5):52-56.
    [18]
    王瑛, 蒋伟忠, 陈小英, 等.琥珀及其仿制品的宝石学和红外光谱特征[J].上海国土资源, 2010(2):58-62.

Catalog

    Article Metrics

    Article views (365) PDF downloads (51) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return