LI Jinjun, LAN Yan, HU Chuyan, LI Xungui. Application of GC-MS and FTIR in Identification of Amber and Copal Resin[J]. Journal of Gems & Gemmology, 2017, 19(2): 9-19. DOI: 10.15964/j.cnki.027jgg.2017.02.002
Citation: LI Jinjun, LAN Yan, HU Chuyan, LI Xungui. Application of GC-MS and FTIR in Identification of Amber and Copal Resin[J]. Journal of Gems & Gemmology, 2017, 19(2): 9-19. DOI: 10.15964/j.cnki.027jgg.2017.02.002

Application of GC-MS and FTIR in Identification of Amber and Copal Resin

More Information
  • Received Date: October 26, 2016
  • In recent years, distinguish of amber and copal resin and origin identification of amber are hot topics in academic research. Identification is always with the help of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and other means. Although there are some differences in IR and Raman spectra, there are still some similarities. The results do not completely distinguish amber and the copal resins. In the paper, the organic compounds in amber and copal resin were tested by Gas Chromatography-Mass Spectrometer (GC-MS), based on the literatures of both home and abroad. GC-MS showed that the diterpenoids of amber and copal resin are similar, but because of the low maturity of copal resin and the high content of diterpene monomer, there are some components of the difference. Amber non-polar organic compounds are mostly pimaric acid, isopimaric acid and abietic acid. The combination of TIC spectrum and Fourier transform infrared spectroscopy can be used as the basis for the determination of amber and copal resin.
  • [1]
    Bray P S, Anderson K B. Identification of Carboniferous (320 million years old) class Ic amber[J]. Science, 2009, 326(5949):132-134.
    [2]
    Anderson K B, Crelling J C.Amber, resinite, and fossil resins[M]. US:American Chemical Society, 1995.
    [3]
    Guiliano M, Asia L, Onoratini G, et al. Applications of diamond crystal ATR FTIR spectroscopy to the characterization of ambers[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2007, 67(5):1407-1411.
    [4]
    亓利剑, 周征宇, 廖宗廷, 等. 热压条件下柯巴树脂的酯化聚合行为及13C NMR表征[J].矿物学报,2010(S1):29-30.
    [5]
    Scalarone D, Lazzari M, Chiantore O. Ageing behaviour and analytical pyrolysis characterisation of diterpenic resins used as art materials:Manila copal and sandarac[J]. Journal of Analytical & Applied Pyrolysis, 2003, S 68-69(3):115-136.
    [6]
    杨一萍, 王雅玫.琥珀与柯巴树脂的有机成分及其谱学特征综述[J].宝石和宝石学杂志, 2010, 12(1):16-22.
    [7]
    房笑淳, 陈迎斌.不同产地琥珀有机元素组成及光谱学特征[J].岩石矿物学杂志, 2014(S2):107-110.
    [8]
    董雅洁, 余晓艳.几种不同产地琥珀的宝石学和红外光谱特征研究[A].2013中国珠宝首饰学术交流会[C], 北京:国土资源部珠宝玉石首饰管理中心,2013.
    [9]
    Martinez-Richa A, Vera-Graziano R, Rivera A, et al. A solid-state 13C NMR analysis of ambers[J]. Polymer, 2000, 41(2):743-750.
    [10]
    Beck C W, Wilbur E, Meret S. Infrared spectra and the origin of amber[J]. Nature, 1964, 201(4916):256-257.
    [11]
    Sonibare O O, Agbaje O B, Jacob D E, et al. Terpenoid composition and origin of amber from the Cape York Peninsula, Australia[J]. Australian Journal of Earth Sciences, 2014, 61(7):979-985.
    [12]
    Otto A, Simoneit B R T, Wilde V, et al. Terpenoid composition of three fossil resins from Cretaceous and Tertiary conifers[J]. Review of Palaeobotany & Palynology, 2002, 120(120):203-215.
    [13]
    Ribechini E, Rocchi M, Deviese T, et al. Gas chromatographic and mass spectrometric characterisation of European fossil resins[J]. Amber Views Opinions, 2014(2):78-82.
    [14]
    Vrgolici M, Petroviciu I, Teodor E, et al. TD/CGC/MS and FT-IR characterization of archaeological amber artefacts from Romanian collections (Roman age)[J]. Revue Roumaine De Chimie, 2010, 55(5):349-355.
    [15]
    Czechowski F, Simoneit B R T, Sachanbiński M, et al. Physicochemical structural characterization of ambers from deposits in Poland[J]. Applied Geochemistry, 1996, 11(6):811-834.
    [16]
    Yamamoto S, Otto A, Krumbiegel G, et al. The natural product biomarkers in succinite, glessite and stantienite ambers from Bitterfeld, Germany[J]. Review of Palaeobotany & Palynology, 2006, 140(1-2):27-49.
    [17]
    Feist M, Lamprecht I, Müller F. Thermal investigations of amber and copal[J]. Thermochimica Acta, 2007, 458(1-2):162-170.
    [18]
    Brody R H, Edwards H G,Pollard A M.A study of amber and copal samples using FT-Raman spectroscopy[J].Spectrochimica Acta Part A:Molecular and Biomo-lecular Spectroscopy, 2001, 57(6):1325-1338.
    [19]
    饶之帆, 谢劼, 董鹍. 琥珀、柯巴树脂、松香的光谱学特征[J]. 光谱实验室, 2013, 30(2):720-724.
  • Related Articles

    [1]ZHOU Jiling, WANG Chengsi, YE Yu, Shen Andy Hsitien. Quantitative Analysis of Photoluminescence Spectrum of Red Spinel from Four Localities and Its Application in Provenance Tracing[J]. Journal of Gems & Gemmology, 2024, 26(S1): 46-49.
    [2]ZHANG Xiaoyu, SONG Zhonghua, WANG Yang, LI Meng, LIU Meiying, GAO Bo. Blue CVD Synthetic Diamond Coloured by SiV and GR1 Defects[J]. Journal of Gems & Gemmology, 2023, 25(3): 1-6. DOI: 10.15964/j.cnki.027jgg.2023.03.001
    [3]YUAN Joe C.C., QI Lijian. A Brief Description of Identification Methods of HPHT and CVD Lab-Grown Diamonds and the Latest Market Analysis[J]. Journal of Gems & Gemmology, 2021, 23(6): 40-50. DOI: 10.15964/j.cnki.027jgg.2021.06.004
    [4]ZHU Wenfang, DING Ting, LI Huihuang, ZHU Xiaoxia. Identification Characteristic of HPHT-Treated Yellow Type Ⅰb CVD Synthetic Diamond[J]. Journal of Gems & Gemmology, 2021, 23(3): 1-6. DOI: 10.15964/j.cnki.027jgg.2021.03.001
    [5]SHAO Tian, LYU Fanglin, ZHANG Jinqiu, ZHANG Haikun, Shen Andy Hsitien. Phosphorescence Characteristic on Boron-Doped HPHT Synthetic Diamond Produced in China[J]. Journal of Gems & Gemmology, 2019, 21(S1): 1-3. DOI: 10.15964/j.cnki.027jgg.2019.S1.001
    [6]DAI Huiru, TANG Shi, LU Taijin, CHENG Juan, SONG Zhonghua, JIANG Di, WU Xuxu, ZHANG Xiaoyu, GAO Bo, SU Jun, MA Yongwang, ZHANG Jian, KE Jie. Gemmological Characteristic of Synthetic Diamond "Lightbox Jewelry"[J]. Journal of Gems & Gemmology, 2019, 21(5): 38-47. DOI: 10.15964/j.cnki.027jgg.2019.05.005
    [7]SONG Zhonghua, LU Taijin, SU Jun, GAO Bo, TANG Shi, HU Ning. Silicon-Doped CVD Synthetic Diamond with Photochromic Effect[J]. Journal of Gems & Gemmology, 2016, 18(1): 1-5.
    [8]LU, Xiao-min, ZHANG Yu-bing, LAN Yan, DING Ting, SONG Zhong-hua, ZHANG Jian, LU Tai-jin, SHEN Mei-dong. Characteristics of Lamellar Growth Structure and Ultraviolet Fluorescence of CVD Synthetic Diamonds[J]. Journal of Gems & Gemmology, 2013, 15(3): 30-35.
    [9]SONG Zhong-hua, LAN Yan, SHEN Mei-dong, LU Tai-jin, KE Jie, LIU Jian-hui, ZHANG Yu-bing. Identification Characteristics of Undisclosed CVD Synthetic Diamonds Found Recently by NGTC[J]. Journal of Gems & Gemmology, 2012, 14(4): 30-34.
    [10]Qi Lijian, Yuan Xinqiang, Luo Yongan, Yuan Zhizhong. CHATHAM SYNTHETIC COLOURLESS DIAMOND——A mixed variety of Ⅱa~Ⅱb types[J]. Journal of Gems & Gemmology, 1999, 1(4): 7-10.

Catalog

    Article Metrics

    Article views (393) PDF downloads (57) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return