LUO Zemin, Andy Hsitien Shen, ZHU Qinwen, LIU Ling. How Structure Compactness Impacts the Quantitative Colour Research of Turquoise[J]. Journal of Gems & Gemmology, 2016, 18(2): 1-8.
Citation: LUO Zemin, Andy Hsitien Shen, ZHU Qinwen, LIU Ling. How Structure Compactness Impacts the Quantitative Colour Research of Turquoise[J]. Journal of Gems & Gemmology, 2016, 18(2): 1-8.

How Structure Compactness Impacts the Quantitative Colour Research of Turquoise

More Information
  • Received Date: November 15, 2015
  • The structure compactness has an important impact on the quantitative colour research of turquoise. The authors first characterized the colour heterogeneity of turquoise in certain areas by using a standard colour variable:CIE 1976 colour difference (ΔE). The structure compactness of turquoise sample was measured by hydrostatic weighing method for bulk property and atomic force microscope (AFM) for surface property. The loose turquoise sample shows larger ΔE and standard deviation, bigger roughness, and much smaller specific gravity value than that of the compacted sample. The loose turquoise sample also exhibits large uncertainties in the chemical composition. By using laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS), the authors found that the concentrations of colour causing elements such as Cu and Fe had substantial decline along with the laser ablation time, which never happen in the compacted sample. Meanwhile, the study on unearthed ancient turquoise samples shows that loose turquoise has bigger colour difference, lower anti-corrosion and anti-contamination ability than that of compacted turquoise. In contrast, turquoise with compacted structure has better quality, and presents larger specific gravity, lower surface roughness, more homogeneous colour, more uniform distribution of colour causing elements, and stronger anti-contamination ability. Therefore, the authors propose that accurate description of compactness is an indispensable criterion for the further quantitative colour classification of turquoise.
  • [1]
    叶晓红,任佳,许宏,等.二里头遗址出土绿松石器物的来源初探[J].第四纪研究, 34(1):212-223.
    [2]
    Wang F Q. A gemological study of turquoise in China[J]. Gems & Gemology, 1986, 22(1):35-37.
    [3]
    李延详,先怡衡.美国古代绿松石示踪研究[J].文物保护与考古科学,2015, 27(2):102-109.
    [4]
    毛振伟,冯敏,张仕定,等.贾湖遗址出土绿松石的无损检测及矿物来源初探[J].华夏考古, 2005(1):55-61.
    [5]
    郝用威,郝飞舟.中国新石器时代绿松石文化[J].岩石矿物学杂志,2002, 21(S):147-150.
    [6]
    Chen Q L, Yin Z W, Qi L J, et al. Turquoise from Zhushan Country, Hubei Provinve, China[J]. Gems & Gemology, 2012, 48(3):198-204.
    [7]
    周彦,亓利剑,戴慧,等.安徽殿庵山绿松石的宝石学特征研究[J].宝石和宝石学杂志,2013, 15(4):37-45.
    [8]
    赵虹霞,伏修锋,干福熹,等.不同产地绿松石无损检测及岩相结构特征研究[J].岩矿测试,2007, 26(2):141-144.
    [9]
    郭颖,张钧,金莉莉.水吸附对湖北竹山绿松石蓝绿色彩度及色调的影响[J].矿物学报,2010(S):39-40.
    [10]
    栾丽君,姚爱民,韩照信,等.绿松石颜色指数分析[J].西北地质,2004, 37(2):48-52.
    [11]
    金莉莉.湖北竹山绿松石颜色成因及水对颜色的影响[D].北京:中国地质大学,2008.
    [12]
    张慧芬,林传易,马钟玮,等.绿松石的某些磁性、光谱特性和颜色的研究[J].矿物学报, 1982(4):254-261.
    [13]
    栾丽君,韩照信,王朝友,等.绿松石呈色机理初探[J].西北地质,2004, 37(3):77-82.
    [14]
    薛鸿庆,陈沛然,李清华.含铁绿松石的电子顺磁共振和电子探针研究[J].硅酸盐学报,1985, 13(2):234-238.
    [15]
    谢天琪,何雪梅,邓旺晖.绿松石中的H2O和颜色关系[A]//中国珠宝首饰学术交流会论文集[C].北京:地质出版社,2013:209-213.
    [16]
    李新安,王辅亚,张恵芬.绿松石中水的结构与特征[J].矿物学报, 1984(1):78-83.
    [17]
    湖北省质量技术监督局.DB42/T 769-2011地理标志产品竹山绿松石[S].2012.
    [18]
    Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2):34-43.
    [19]
    Liu Y S, Hu Z C, Zong K Q. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546.
    [20]
    Sharma G.Digital color imaging handbook (1.7.2 ed.)[M]. Florida:CRC Press, 2003:30.
    [21]
    Degarmo E P, Black J, Kohser R A.Materials and processes in manufacturing (9th ed.)[M]. New York:John Wiley & Sons, Inc., 2003:223.
  • Related Articles

    [1]LIU Jia, YANG Mingxing, LIU Ling. Raman Spectrum Characteristic of Associated Minerals of Turquoise from Mongolia[J]. Journal of Gems & Gemmology, 2022, 24(1): 12-19. DOI: 10.15964/j.cnki.027jgg.2022.01.002
    [2]LIU Jia, DI Jingru, HE Chong. Gemmological Characteristic of Spinel Associated Colourless Sapphire[J]. Journal of Gems & Gemmology, 2021, 23(5): 36-42. DOI: 10.15964/j.cnki.027jgg.2021.05.004
    [3]JIN Xiaoting, LI Guogui, LIAO Bingbing, LI Xueming, LONG Chu. Gemmological and Vibrational Spectrum Characteristics of Micaceous Quartzose Jade "Strawberry Crystal"[J]. Journal of Gems & Gemmology, 2021, 23(3): 19-28. DOI: 10.15964/j.cnki.027jgg.2021.03.003
    [4]ZHAI Shaohua, PEI Jingcheng, HUANG Weizhi. Orange-Yellow Inclusion in Spinel from Man Sin, Myanmar[J]. Journal of Gems & Gemmology, 2019, 21(6): 24-30. DOI: 10.15964/j.cnki.027jgg.2019.06.003
    [5]YANG Ruzeng, YANG Song. Application of Infrared Spectroscopy and Raman Spectroscopy on Identification of Heat-treated Aquamarine[J]. Journal of Gems & Gemmology, 2014, 16(1): 46-49.
    [6]WU Wenjie, WANG Yamei. Study on Raman Spectrum Characteristics of Amber[J]. Journal of Gems & Gemmology, 2014, 16(1): 40-45.
    [7]LIU Wei-dong. Identifying Natural Chicken-Blood Stone from Its Imitation by Raman Spectrum[J]. Journal of Gems & Gemmology, 2003, 5(3): 24-25.
    [8]Gao Yan, Zhang Hui. Research on Raman Spectra of Natural and Dyed Red Corals[J]. Journal of Gems & Gemmology, 2002, 4(4): 20-23.
    [9]He Mouchun, Zhu Xuanmin, Hong Bin. Raman Spectrum Feature of Ruby from Yuanjiang, Yunnan Province[J]. Journal of Gems & Gemmology, 2001, 3(4): 25-27.
    [10]GAO Yan, ZHANG Beili. Research on Relationship between Colour and Raman Spectrum of Freshwater Cultured Pearl[J]. Journal of Gems & Gemmology, 2001, 3(3): 17-20.

Catalog

    Article Metrics

    Article views (333) PDF downloads (33) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return