[1] |
Deutsch A, Masaitis V L, Langenhorst F, et al. 波皮盖——一个保存完好的特大撞击构造, 既是国家宝藏, 也是世界地质遗址[J]. 宝石和宝石学杂志(中英文), 2013, 15(1): 57-66.
Deutsch A, Masaitis V L, Langenhorst F, et al. Popigai, Siberia-well preserved giant impact structure, national treasury, and world's geological heritage[J]. Journal of Gems & Gemmology, 2013, 15(1): 57-66. (in Chinese)
|
[2] |
梁伟章, 丘志力, 李志翔. 俄罗斯超级钻石矿给钻石行业带来的思考[J]. 中国宝石, 2013(1): 102-104.
Liang W Z, Qiu Z L, Li Z X. Implications of the Russian super diamond mine for the global diamond industry[J]. China Gems, 2013(1): 102-104. (in Chinese)
|
[3] |
Frondel C, Marvin U B. Lonsdaleite, a hexagonal polymorph of diamond[J]. Nature, 1967, 214(5 088): 587-589.
|
[4] |
Pan Z, Sun H, Zhang Y, et al. Harder than diamond: Superior indentation strength of wurtzite BN and lonsdaleite[J]. Physical Review Letters, 2009, 102(5): 055 503. doi: 10.1103/PhysRevLett.102.055503
|
[5] |
Masaitis V L. Popigai crater: Origin and distribution of diamond‐bearing impactites[J]. Meteoritics & Planetary Science, 1998, 33(2): 349-359.
|
[6] |
Németh P, Garvie L A J, Aoki T, et al. Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material[J]. Nature Communications, 2014, 5(1): 5 447. doi: 10.1038/ncomms6447
|
[7] |
Chen D, Chen G, Lyu L, et al. General approach for synthesizing hexagonal diamond by heating post-graphite phases[J/OL]. Nature Materials, 2025.
|
[8] |
Bundy F P, Kasper J S. Hexagonal diamond—A new form of carbon[J]. The Journal of Chemical Physics, 1967, 46(9): 3 437-3 446. doi: 10.1063/1.1841236
|
[9] |
Irifune T, Kurio A, Sakamoto S, et al. Ultrahard polycrystalline diamond from graphite[J]. Nature, 2003, 421(6 923): 599-600.
|
[10] |
Britun V F, Kurdyumov A V, Petrusha I A. Diffusionless nucleation of lonsdaleite and diamond in hexagonal graphite under static compression[J]. Powder Metallurgy and Metal Ceramics, 2004, 43(1-2): 87-93.
|
[11] |
Sumiya H, Yusa H, Inoue T, et al. Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation from graphite and non-graphitic carbon at high pressure and temperature[J]. High Pressure Research, 2006, 26(2): 63-69. doi: 10.1080/08957950600765863
|
[12] |
Erskine D J, Nellis W J. Shock-induced martensitic phase transformation of oriented graphite to diamond[J]. Nature, 1991, 349(6 307): 317-319.
|
[13] |
He H, Sekine T, Kobayashi T. Direct transformation of cubic diamond to hexagonal diamond[J]. Applied physics letters, 2002, 81(4): 610-612. doi: 10.1063/1.1495078
|
[14] |
Khaliullin R Z, Eshet H, Kühne T D, et al. Nucleation mechanism for the direct graphite-to-diamond phase transition[J]. Nature Materials, 2011, 10(9): 693-697. doi: 10.1038/nmat3078
|
[15] |
Wang Y, Panzik J E, Kiefer B, et al. Crystal structure of graphite under room-temperature compression and decompression[J]. Scientific Reports, 2012, 2(1): 520. doi: 10.1038/srep00520
|
[16] |
Dong J, Yao Z, Yao M, et al. Decompression-induced diamond formation from graphite sheared under pressure[J]. Physical Review Letters, 2020, 124(6): 065 701. doi: 10.1103/PhysRevLett.124.065701
|
[17] |
Amsler M, Flores-Livas J A, Lehtovaara L, et al. Crystal structure of cold compressed graphite[J]. Physical Review Letters, 2012, 108(6): 065 501. doi: 10.1103/PhysRevLett.108.065501
|
[18] |
Zhu S, Yan X, Liu J, et al. A revisited mechanism of the graphite-to-diamond transition at high temperature[J]. Matter, 2020, 3(3): 864-878. doi: 10.1016/j.matt.2020.05.013
|
[19] |
Huang Q, Yu D, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability[J]. Nature, 2014, 510(7 504): 250-253.
|
[20] |
Petit T, Arnault J C, Girard H A, et al. Early stages of surface graphitization on nanodiamond probed by X-ray photoelectron spectroscopy[J]. Physical Review B—Condensed Matter and Materials Physics, 2011, 84(23): 233 407. doi: 10.1103/PhysRevB.84.233407
|
[21] |
Isobe F, Ohfuji H, Sumiya H, et al. Nanolayered diamond sintered compact obtained by direct conversion from highly oriented graphite under high pressure and high temperature[J]. Journal of Nanomaterials, 2013(1): 380 165.
|
[22] |
Aharonovich I, Greentree A D, Prawer S. Diamond photonics[J]. Nature Photonics, 2011, 5(7): 397-405. doi: 10.1038/nphoton.2011.54
|
[23] |
Jones A P, McMillan P F, Salzmann C G, et al. Structural characterization of natural diamond shocked to 60 GPa; implications for Earth and planetary systems[J]. Lithos, 2016(265): 214-221.
|