Citation: | Eaton-Magaña Sally, Ardon Troy, Breeding Christopher M.. Laboratory-Grown Diamond: A Gemological Laboratory Perspective[J]. Journal of Gems & Gemmology , 2021, 23(6): 25-39. doi: 10.15964/j.cnki.027jgg.2021.06.003 |
[1] |
Ang us, J.C. (2014). Diamond synthesis by chemical vapor deposition: The early years. Diamond and Related Materials, 49: 77-86. http://dx.doi.org/10.1016/j.diamond.2014.08.004. doi: 10.1016/j.diamond.2014.08.004
|
[2] |
Ardon, T., Batin, R. (2016). Lab notes: HPHT-grown synthetic with strain. Gems & Gemology, 52(4), 417-418.
|
[3] |
Ardon, T., McElhenny, G. (2019). Labnotes: Synthetic diamond CVD layer grown on natural diamond. Gems & Gemology, 55(1): 97-99.
|
[4] |
Bates, R. (2021). Lightbox to offer bigger, better diamonds. https://www.jckonline.com/editorial-article/lightbox-bigger-better-diamonds/.
|
[5] |
Berdermann, E., Ciobanu, M., Hartmann, W., et al. (2004). Characterisation of single-crystal CVD-diamond detectors. ResearchGate. https://www.researchgate.net/publication/264999244.
|
[6] |
Breeding, C.M., Shigley, J.E. (2009). The "type" classification system of diamonds and its importance in gemology. Gems & Gemology, 45(2): 96-111. http://dx.doi.org/10.5741/GEMS.45.2.96. doi: 10.5741/GEMS.45.2.96
|
[7] |
Breeze, B.G., Meara, C.J., Wu, X.X., et al. (2020). Doubly charged silicon vacancy center, Si-N complexes, and photochromism in N and Si codoped diamond. Physical Review B, 101(18): 184-115. doi: 10.1103/PhysRevB.101.184115
|
[8] |
Butler, J.E., Mankelevich, Y.A., Cheesman, A., et al. (2009). Understanding the chemical vapor deposition of diamond: Recent progress. Journal of Physics: Condensed Matter, 21(36): 1-20. http://dx.doi.org/10.1088/0953-8984/21/36/364201. doi: 10.1088/0953-8984/21/36/364201
|
[9] |
Choi, H., Kim, Y., Lee, M., Seok, J. (2020). Spectroscopic analysis of near colorless/pink/blue synthetic diamonds from Lightbox. Journal of the Korean Crystal Growth and Crystal Technology, 30(1): 21-26. https://koreascience.or.kr/article/JAKO202013461499654.pdf
|
[10] |
Deljanin, B., Alessandri, M., Peretti, A., et al. (2015). NDT breaking the 10 carat barrier: World record faceted and gem-quality synthetic diamonds investigated. Contributions to Gemology, 15: 1-7.
|
[11] |
DeMarco, A. (2020, October 29). De Beers' Lightbox opens $94 million lab-grown diamond facility, partners with Blue Nile. Forbes. https://www.forbes.com/sites/anthonydemarco/2020/10/29/de-beers-lightbox-opens-94-million-lab-grown-diamond-facility-partners-with-blue-nile/?sh=2acb5e770851.
|
[12] |
D'Haenens-Johansson, U.F.S., Moe, K.S., Johnson, P., et al. (2014). Near-colorless HPHT synthetic diamonds from AOTC Group. Gems & Gemology, 50(1): 30-45. http://dx.doi.org/10.5741/GEMS.50.1.30. doi: 10.5741/GEMS.50.1.30
|
[13] |
D'Haenens-Johansson, U.F.S., Katrusha, A., Moe, K.S., et al. (2015a). Large colorless HPHT-grown synthetic gem diamonds from New Diamond Technology, Russia. Gems & Gemology, 51(3): 260-279. http://dx.doi.org/10.5741/GEMS.51.3.260. doi: 10.5741/GEMS.51.3.260
|
[14] |
D'Haenens-Johansson, U.F.S., Ardon, T., Wang, W. (2015b). CVD synthetic gem diamonds with high silicon-vacancy concentrations. Conference on New Diamond and Nano Carbons, May 2015, Shizuoka, Japan.
|
[15] |
Diamond Services. (2018, April 17). Lab alert: HPHT-grown diamonds might escape detection as synthetics once they are treated with irradiation. https://myemail.constantcontact.com/DIAMOND-SERVICE-PRESS-RELEASE--Lab-Alert---HPHT-grown-diamonds-might-escape-detection-as-synthetics--once-they-are-treated-with-.html?soid=1101798710063&aid=CES8PQtsYeY.
|
[16] |
Dieck, C., Loudin, L., D'Haenens-Johansson, U.F.S. (2015). Two large CVD-grown synthetic diamonds tested. Gems & Gemology, 51(4): 437-439.
|
[17] |
Eaton-Magaña, S.C., D'Haenens-Johansson, U.F.S. (2012). Recent advances in CVD synthetic diamond quality. Gems & Gemology, 48(2): 124-127.
|
[18] |
Eaton-Magaña, S.C., Shigley, J. (2016). Observations on CVD-grown synthetic diamonds: A review. Gems & Gemology, 52(3): 222-245. http://dx.doi.org/10.5741/GEMS.52.3.222. doi: 10.5741/GEMS.52.3.222
|
[19] |
Eaton-Magaña, S.C., Shigley, J.E., Breeding, C.M. (2017). Observations on HPHT-grown synthetic diamonds: A review. Gems & Gemology, 53(3): 262-284. http://dx.doi.org/10.5741/GEMS.53.3.262. doi: 10.5741/GEMS.53.3.262
|
[20] |
Eaton-Magaña, S.C., Breeding, C.M. (2018). Features of synthetic diamonds. Gems & Gemology, 54(2): 202-204. https://www.gia.edu/CN/gems-gemology/summer-2018-features-of-synthetic-diamonds
|
[21] |
Eaton-Magaña, S.C. (2019). Faint green HPHT synthetic diamonds. Gems & Gemology, 55(1): 99-101. https://www.gia.edu/gems-gemology/spring-2019-labnotes-faint-green-hpht-synthetic-diamonds
|
[22] |
Eaton-Magaña, S., Ardon, T., Breeding, C.M., et al. (2020). Natural-color D-to-Z diamonds: A crystal-clear perspective. Gems & Gemology, 56(3): 318-335. https://www.gia.edu/gems-gemology/fall-2020-natural-color-d-to-z-diamonds-crystal-clear-perspective
|
[23] |
Eaton-Magaña, S., Breeding, C. M., Palke, A. C., et al. (2021). Raman and photoluminescence mapping of gem materials. Minerals, 11(2): 177, 31. doi: 10.3390/min11020177
|
[24] |
Fisher, D., Sibley, S.J., Kelly, C.J. (2009). Brown colour in natural diamond and interaction between the brown related and other colour-inducing defects. Journal of Physics: Condensed Matter, 21(36): 364213(10pp). http://dx.doi.org/10.1088/0953-8984/21/36/364213. doi: 10.1088/0953-8984/21/36/364213
|
[25] |
Johnson, P., Myagkaya, E. (2017). HPHT synthetic diamond with intense green coloration. Gems & Gemology, 53(1): 96-98.
|
[26] |
Khan, R.U.A., Martineau, P.M., Cann, B.L., et al. (2009). Charge-transfer effects, thermos, and photochromism in single crystal CVD synthetic diamond. Journal of Physics: Condensed Matter, 21(36): 364214(9pp). https://arxiv.org/abs/0909.1190
|
[27] |
Khan, R.U.A., Martineau, P.M., Cann, B.L., et al. (2010). Color alterations in CVD synthetic diamond with heat and UV exposure: Implications for color grading and identification. Gems & Gemology, 18(2): 18-26. https://www.gia.edu/gems-gemology/spring-2010-synthetic-diamond-khan
|
[28] |
Lu, T., Ke, J., Lan, Y., et al. (2019). Current status of Chinese synthetic diamonds. Journal of Gemmology, 36(8): 748-757. doi: 10.15506/JoG.2019.36.8.748
|
[29] |
Martineau, P.M., Lawson, S.C., Taylor, A.J., et al. (2004). Identification of synthetic diamond grown using chemical vapor deposition (CVD). Gems & Gemology, 40(1): 2-25. http://dx.doi.org/10.5741/GEMS.40.1.2. doi: 10.5741/GEMS.40.1.2
|
[30] |
Meylor Global offers extraordinarily large laboratory-grown diamonds and LGD jewellery with customised cuts. (2020, November 2). Jewellery Outlook. com. https://jewelleryoutlook.com/meylor-global-offers-extraordinarily-large-laboratory-grown-diamonds-and-lgd-jewellery-with-customised-cuts/.
|
[31] |
Moe, K.S., Johnson, P., D'Haenens-Johansson, U., et al. (2017). Lab notes: A synthetic diamond overgrowth on a natural diamond. Gems & Gemology, 53(2): 237-239. https://www.gia.edu/gems-gemology/summer-2017-labnotes-synthetic-diamond-overgrowth-natural-diamond-v2
|
[32] |
Nad, S., Gu, Y., Asmussen, J. (2015). Growth strategies for large and high quality single crystal diamond substrates. Diamond and Related Materials, 60: 26-34. http://dx.doi.org/10.1016/j.diamond.2015.09.018. doi: 10.1016/j.diamond.2015.09.018
|
[33] |
Shigley, J.E., Abbaschian, R., Clarke, C. (2002). Gemesis laboratory-created diamonds. Gems & Gemology, 38(4): 301-309. http://dx.doi.org/10.5741/GEMS.38.4.301. doi: 10.5741/GEMS.38.4.301
|
[34] |
Shigley, J.E., McClure, S.F., Breeding, C.M., et al. (2004). Lab-grown colored diamonds from Chatham Created Gems. Gems & Gemology, 40(2): 128-145. http://dx.doi.org/10.5741/GEMS.40.2.128. doi: 10.5741/GEMS.40.2.128
|
[35] |
Smith, E.M., Shirey, S.B., Nestola, F., et al. (2016). Large gem diamonds from metallic liquid in Earth's deep mantle. Science, 354(6 318): 1 403-1 405. http://dx.doi.org/10.1126/science.aal1303. doi: 10.1126/science.aal1303
|
[36] |
Tang, S., Su, J., Lu, T., et al. (2018). A thick overgrowth of CVD synthetic diamond on a natural diamond. Journal of Gemmology, 36(2): 134-141. doi: 10.15506/JoG.2018.36.2.134
|
[37] |
Tsai, T., D'Haenens-Johansson, U.F.S. (2019). Gemstone screening and identification using fluorescence spectroscopy. Frontiers in Optics + Laser Science APS/DLS, OSA Technical Digest (Optical Society of America, 2019).
|
[38] |
Wang, W., Moses, T., Linares, R., et al. (2003). Gem-quality synthetic diamonds grown by the chemical vapor deposition method. Gems & Gemology, 39(4): 268-283.http://dx.doi.org/10.5741/GEMS.39.4.268. doi: 10.5741/GEMS.39.4.268
|
[39] |
Wang, W., Tallaire, A., Hall, M.S., et al. (2005). Experimental CVD synthetic diamonds from LIMHP-CNRS, France. Gems & Gemology, 41(3): 234-244.http://dx.doi.org/10.5741/GEMS.41.3.234. doi: 10.5741/GEMS.41.3.234
|
[40] |
Wang, W., Hall, M.S., Moe, K.S., et al. (2007). Latest generation CVD-grown synthetic diamonds from Apollo Diamond Inc. Gems & Gemology, 43(4): 294-312.http://dx.doi.org/10.5741/GEMS.43.4.294. doi: 10.5741/GEMS.43.4.294
|
[41] |
Wang, W., Doering, P., Tower, J., et al. (2010). Strongly colored pink CVD lab-grown diamonds. Gems & Gemology, 46(1): 4-17.http://dx.doi.org/10.5741/GEMS.46.1.4. doi: 10.5741/GEMS.46.1.4
|
[42] |
Wang, W., D'Haenens-Johansson, U.F.S., Johnson, P., et al. (2012). CVD synthetic diamonds from Gemesis Corp. Gems & Gemology, 48(2): 80-97. http://dx.doi.org/10.5741/GEMS.48.2.80. doi: 10.5741/GEMS.48.2.80
|