粉色—紫色缅甸尖晶石热处理前后紫外-可见光谱分析

任芊芊, 陈美华, 王成思, 吴改

任芊芊, 陈美华, 王成思, 吴改. 粉色—紫色缅甸尖晶石热处理前后紫外-可见光谱分析[J]. 宝石和宝石学杂志, 2016, 18(3): 24-30.
引用本文: 任芊芊, 陈美华, 王成思, 吴改. 粉色—紫色缅甸尖晶石热处理前后紫外-可见光谱分析[J]. 宝石和宝石学杂志, 2016, 18(3): 24-30.
REN Qianqian, CHEN Meihua, WANG Chengsi, WU Gai. Analysis of UV-Vis Spectrum on Pink-Purple Spinel from Burma before and after Heat Treatment[J]. Journal of Gems & Gemmology, 2016, 18(3): 24-30.
Citation: REN Qianqian, CHEN Meihua, WANG Chengsi, WU Gai. Analysis of UV-Vis Spectrum on Pink-Purple Spinel from Burma before and after Heat Treatment[J]. Journal of Gems & Gemmology, 2016, 18(3): 24-30.

粉色—紫色缅甸尖晶石热处理前后紫外-可见光谱分析

基金项目: 

中国地质大学(武汉)珠宝检测技术创新中心开放基金GICTXM-201502

详细信息
    作者简介:

    任芊芊(1989-),女,硕士研究生,主要从事宝石学方面的研究。

  • 中图分类号: TS93

Analysis of UV-Vis Spectrum on Pink-Purple Spinel from Burma before and after Heat Treatment

  • 摘要: 选取5颗粉色—紫色缅甸尖晶石原石为实验样品,分别在1 200℃和1 600℃下进行恒温10 h的热处理实验。通过分析样品成分及热处理前后紫外-可见光谱,发现粉色—紫色尖晶石样品均为含微量Fe元素的镁铝尖晶石,且在350~600 nm范围内出现吸收带的位置基本相同,其致色原因与八面体中Fe3+和四面体中Fe2+的自旋禁阻跃迁及二者间电荷耦合作用有关。对比样品的两次热处理后紫外-可见光谱结果发现,热处理过程促进350~430 nm及500~600 nm范围内吸收强度增加,前者与高温下尖晶石内部结构无序引起近紫外区O2-→Fe2+、Fe3+离子间电荷转移作用增加有关,后者由进入四面体内部Fe3+同相邻位置内Fe2+共同作用产生。在经1 600℃热处理后,近紫外区吸收边强度再次增加使样品光谱发生明显改变,色调偏红,部分样品因热处理诱发内部裂隙、透明度降低,热处理效果不明显。
    Abstract: In this paper, 5 pieces of pink-purple spinels from Burma were selected as experimental samples and heated at 1 200℃ and 1 600℃ for 10 hours respectively.Through laser induced breakdown spectroscopy (LIBS) analysis for the chemical compositions and UV-Vis spectroscopy, it was found that all samples were MgAl2O4 with trace amount of element Fe and the UV-Vis absorption bands were basically the same in the range 350-600 nm.The causes for their colours may be related to spin-forbidden transition of Fe3+ in octahedral site and Fe2+ in tetrahedral site and charge transfer between these pairs.Comparing UV-Vis spectra before and after heat treatment, it was found that the absorption intensity of all samples were enhaced dramatically in 350-430 nm and 500-600 nm areas.The absorption band at 350-430 nm is believed to be caused by increasing intervalence charge transfer between O2-→Fe2+、Fe3+ after the disorder structural transition.The absorption band at 500-600 nm is believed to be caused by Fe3+ in tetrahedral site effected by Fe2+ in adjacent site.After the heat treatment at temperature of 1 600℃, the absorption intensity in near ultraviolet region increased again and led to a clear change in UV-Vis spectrum, which making the apparent colour of samples become redder, however, some samples fail to follow this result due to internal fissures and lower transparency.
  • [1]

    Peretti A.Spinel's alluring features[J].Gemstone,2014(2):60-64.

    [2]

    Christopher S, Elizabeth D, Wendi W, et al.A closer look at Vietnamese spinel[J].InColor,2008(3):11-13.

    [3]

    Jean B.Beauty and rarity-A quest for Vietnamese blue spinels[J].InColor,2010(2):18-23.

    [4]

    Spinel steps into the spotlight[EB/OL].http://www.diamonds.net/Magazine/Article,2011-05-10.

    [5]

    Pardieu V.Hunting for "Jedi" spinels in Mogok[J].Gems & Gemology,2014,50(1):46-57.

    [6]

    Malsy A, Klemmb L.Distinction of gem spinels from the himalayan mountain belt[J].Chimia,2010,64(10):741-746.

    [7]

    Andreozzi G B, Princivalle F, Skogby H, et al.Cation ordering and structural variations with temperature in MgAl2O4 spinel:An X-ray single-crystal study[J].American Mineralogist,2000,85(9):1164-1171.

    [8]

    Spinel structure[EB/OL].http://chemwiki.ucdavis.edu, 2015-10-11.

    [9]

    Uchida H, Downs R T, Chesley J, et al.Single-crystal X-ray diffraction of spinels from the San Carlos Volcanic Field, Arizona:Spinel as a geothermometer[J].American Mineralogist,2005,90(11-12):1900-1908.

    [10]

    Malsy A K, Karampelas S, Schwarz D, et al.Orangey red to orangey pink gem spinels from a new deposit at Lang Chap[J].The Journal of Gemmology,2012,33(1-4):19-27.

    [11]

    Chauviré B, Rondeau B, Fritsch E, et al.Blue spinel from the Luc Yen District of Vietnam[J].Gems & Gemology,2015,51(1):2-17.

    [12]

    D'Ippolito V.Linking crystal chemistry and physical properties of natural and synthetic spinels:An UV-Vis-NIR and Raman study[D].Roma:Sapienza Universita,2013.

    [13]

    D'Ippolito V, Andreozzi G B, Hålenius U, et al.Color mechanisms in spinel:Cobalt and iron interplay for the blue color[J].Physics & Chemistry of Minerals,2015,42(6):431-439.

    [14]

    Andreozzi G B, Halenius H, Skogby H.Spectroscopic activeIVFe3+-VIFe3+ clusters in spinel-magnesionferrite solid solution crystals:A potential minitor for ordering in oxide spinels[J].Physics & Chemistry of Minerals, 2001,28(7):435-444.

    [15]

    Taran M N, Kochmüller M, Langer K.Electronic absorption spectroscopy of natural (Fe2+, Fe3+)-bearing spinels of spinel s.s.-hercynite and gahnite-hercynite solid solutions at different temperatures and high-pressures[J].Physics & Chemistry of Minerals,2005,32(3):175-188.

    [16]

    Shen A H, Christopher M B, DeGhionno D.Natural spinel, identified with photoluminescence[J].Gems & Gemology,2004,40(2):168-169.

    [17]

    Halenius U,Andreozzi B,Skogby H.Structural relaxation around Cr3+ and the red-green color change in the spinel (sensustricto)-magnesiochromite (MgAl2O4-MgCr2O4) and gahnitezincochromite (ZnAl2O4-ZnCr2O4) solid-solution series[J].American Mineralogist,2010,95(4):456-462.

    [18]

    Ikeda K,Nakamura Y,Masumoto K,et al.Optical spectra of synthetic spinels in the system MgAl2O4-MgCr2O4[J].Journal of the American Ceramic Society,2005,80(10):2672-2676.

    [19]

    Taran M N, Langer K, Platonov A N, et al.Optical absorption investigation of Cr3+ ion-bearing minerals in the temperature range 77-797 K[J].Physics & Chemistry of Minerals,1994,21(6):360-372.

    [20]

    Fregola R A, Bosi F, Skogby H, et al.Optical absorption spectroscopy study of the causes for color variations in natural Fe-bearing gahnite:Insights from iron valency and site distribution data[J].American Mineralogist,2014,99(11-12):2187-2195.

    [21]

    Redfern S A T,Harrison R J, O'Neill H S C, et al.Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600℃ from in situ neutron diffraction[J].American Mineralogist,1999,84(3):299-310.

    [22]

    Yamanaka T, Takéuchi Y.Order-disorder transition in MgAl2O4 spinel at high temperatures up to 1700℃[J].Zeitschrift Fur Kristallographie,1983,165(1-4):65-78.

    [23]

    Taran M N, Parisi F, Lenaz D, et al.Synthetic and natural chromium-bearing spinels:An optical spectroscopy study[J].Phys Chem Minerals,2014,41(8):593-602.

    [24]

    Steven D.Spinel structure[EB/OL].http://www.uwgb.edu/dutchs/Petrology/spinel, 2015-09-19.

    [25]

    Schmetzer K, Haxel C, Amthauer G.Colour of natural spinels, gahnospinels and gahnites[J].Neues Jahrbuch fuer Mineralogie Abhandlungen,1986(160):159-180.

    [26]

    Peterson R C, Lager G A, Hrrterman R L.A time-of-flight neutron powder diffraction study of MgAl2O4 at temperatures up to 1273 K[J].American Mineralogist, 1991, 76(9-10):1589-1596.

计量
  • 文章访问数:  404
  • HTML全文浏览量:  104
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-24
  • 刊出日期:  2021-09-08

目录

    /

    返回文章
    返回