Thermodynamic Calculation on Fluid-Rock Interaction of Jadeite Jade in Secondary Reducing Process
-
摘要: 一些翡翠在表生还原条件下可观察到明显的水岩反应过程以及颜色与组织的改变。根据地质现象,从热力学计算的角度探讨了翡翠中的主矿物硬玉发生水岩反应后形成部分新的自生矿物的可能性。热力学计算的结果显示,在表生作用过程中,在环境存在额外的Mg2+与Fe2+的条件下,翡翠最易与Mg2+和Fe2+发生反应生成绿泥石。该结果为大多数无色翡翠经过表生还原作用后出现暗绿色-水绿色的颜色提供了一定的理论解释。Abstract: The fluid-rock interaction in some jadeite jade, as well as the enhancement of colour and structure could be observed in the secondary reducing process.Based on the geological phenomena, the possibility that some new authigenic minerals are formed by the jadeite in fluid-rock interaction is discussed according to the thermodynamic calculation.The results show that the jadeite jade is most likely to have a reaction with Mg2+ and Fe2+ so as to form chlorite in the presence of additional Mg2+ and Fe2+ and the secondary reducing process, which offer the theoretical explanation for the colour changes of the colourless jadeite jade in the secondary reducing process.
-
-
[1] Hurwit K.Gem trade lab notes:impregnated jadeite jade[J].Gems & Gemology, 1989, 25(4):239-240.
[2] T S Tay, S Paul, C M Puah.SEM studies of bleached and polymer impregnated jadeite[J].The Australian Gemmologist, 1993, 18(8):257-261.
[3] 胡楚雁, 陈钟惠.缅甸硬玉(翡翠)阶地矿床的表生还原性水岩反应特征及其成因初探[J].宝石和宝石学杂志, 2002, 4(1):1-5. [4] 胡楚雁.缅甸硬玉(翡翠)阶地矿床地质演化特征分析[J]. 超硬材料与宝石(特辑), 2004, 16(2):59-61. [5] 张位及.硬玉(翡翠)的表生地球化学及其应用[J].云南地质, 1998, 17(3-4):387-391. [6] 张位及.缅甸北部帕敢地区硬玉(翡翠)矿床地质[J].云南地质, 2002, 21(4):378-390. [7] 袁奎荣, 陈志强.硬玉(翡翠)的矿物成分与赌石预测[J].矿床地质, 1996, (增刊):144-146. [8] 胡楚雁, 狄敬如, 张丛森.缅甸还原性次生化翡翠(翡翠)的傅立叶变换红外光谱分析[J].深圳职业技术学院学报, 2003, (3):30-33. [9] 柳志青, 沈中悦, 杨春茂.宝石学和玉石学[M].杭州:浙江大学出版社, 1999.181-183. [10] 张位及.硬玉(翡翠)中的卯水与卯水作用[J].中国宝玉石, 1999, (4):1-3. [11] 胡楚雁, 陈钟惠.缅甸硬玉(翡翠)阶地矿床表生还原性水岩反应的宝石学意义[J].宝石和宝石学杂志, 2002, 4(2):1-7. [12] 章明奎.赤铁矿在淹水还原条件下转化的实验室观察[J]. 土壤通报, 1993, 24(6):248-249. [13] A H彼列尔曼.后生地球化学[M].龚子同译.北京:科学出版社, 1975.206-236. [14] 杨献忠, 杨祝良.含油玄武岩中绿泥石的形成温度[J].矿物学报, 2002, 22(4):1-6. [15] 申林方, 徐则民.低渗透岩石结构体风化初期的水气分子扩散[J].地球与环境, 2007, 35(2):1-8. [16] 薛纪越, 潘宇观.流体作用下黑山紫苏辉石由多体反应转变引起的超微结构演变[J].科学通报, 2005, 50(12):1-5. [17] 周国平, 吕达人.云南腾冲地热区主要蚀变矿物含量与蚀变母岩的关系[J].岩石矿物学杂志, 1989, 8(4):1-9. [18] 刘玉山, 张桂兰.250~500℃、100 MPa下海水-玄武岩反应的实验研究[J].地球化学, 1996, 25(1):1-10. [19] Burkhard Schramma, Colin W Devey, Kathryn M Gillis, et al.Quantitative assessment of chemical and mineralogical changes due to progressive low-temperature alteration of East Pacific Risebasalts from0to9Ma[J].Chemical Geology, 2005, 218(3-4):281-313.
[20] Michael A Velbel, William W Barker.Ryroxene weathing to smectite:convention and cryo-field emission scanning electron microscopy, Koua Bocca ultramfic complex, Ivory Coast[J].Clays and Clay Minerals, 2008, 56(1):112-127.
[21] 张萌, 黄思静, 冯明石, 等.碎屑岩骨架颗粒溶解的热力学模型及地质意义[J].地球科学与环境学报, 2006, 28(4):1-5. [22] 张萌.鄂尔多斯盆地上古生界碎屑岩次生孔隙形成机制的热力学计算和溶解实验模拟研究[D].成都:成都理工大学, 2007. [23] 李宽良.水文地球化学热力学[M].北京:原子能出版社, 1993.11-38. [24] 赖兴运, 于炳松, 陈军元.碎屑岩骨架颗粒溶解的热力学条件及其在克拉2气田的应用[J].中国科学D辑地球科学, 2004, 34(1):45-53. [25] 林传仙, 白正华, 张哲儒.矿物及有关化合物热力学数据手册[M].北京:科技出版社, 1985.241-289.
计量
- 文章访问数: 14
- HTML全文浏览量: 0
- PDF下载量: 6