Gemmological and Spectral Characteristics of Ruby from Winza, Tanzania
-
摘要:
坦桑尼亚温扎地区产出透明度高、颜色亮度高、色彩饱和度高且常产出粒度大的红宝石,但针对坦桑尼亚温扎红宝石的系统研究较少。利用常规宝石学仪器、激光剥蚀电感耦合等离子体质谱仪、紫外-可见光分光光度计、傅里叶变换红外光谱仪、拉曼光谱仪和三维荧光光谱仪对10颗产自坦桑尼亚温扎的红宝石样品进行系统性的研究与分析。结果显示,坦桑尼亚温扎红宝石含有韭闪石包裹体、气液包裹体、蓝色色区和具有生长间断的负晶包裹体,蓝色色区与较高的Ti元素含量有关,具有产地意义;温扎红宝石具有高Cr和高Fe的特征,两种元素的含量均超过500×10-6,并具有Ti、Mg、V、Ni、Ga等微量元素;紫外-可见光光谱显示清晰的Cr谱,同时也呈现出Fe和Ti的影响;几乎所有样品的红外光谱均可见特征的3 160 cm-1处吸收峰,常伴随着3 240 cm-1和2 420 cm-1吸收峰(称为“3 160组”),为温扎红宝石的特征峰;拉曼光谱显示散射峰与[AlO6]基团的伸缩、弯曲振动有关,由对称弯曲振动(O-Al-Obend)引起的416 cm-1处吸收峰显示最强的光谱特征;三维荧光光谱中显示4个清晰的荧光峰,以λex=408 nm/λem=694 nm峰为最强。
Abstract:Rubies produced in the Winza region of Tanzania are highly transparent, have high colour brightness, high colour saturation and are often produced in large grain sizes, but few systematic studies have been carried out on the rubies from Winza, Tanzania. Systematic study and analysis of 10 ruby samples from Winza, Tanzania were carried out using conventional gemmological instruments, laser ablation inductively coupled plasma mass spectrometry, ultraviolet-visible spectrophotometer, Fourier transform infrared spectroscopy, Raman spectrometry and 3D fluorescence spectrometer. The results show that the rubies from Winza, Tanzania, contain pargasite inclusions, gas-liquid inclusions, blue colour zones, and negative crystal inclusions. The blue colour zone is associated with higher Ti elemental content and is of provenance significance. Rubies from Winza are characterized by high Cr and high Fe, all of which exceed 500×10-6 and that it also contains trace elements such as Ti, Mg, V, Ni, and Ga. The UV-Vis spectrum shows a clear Cr spectrum and also exhibits the influence of Fe and Ti. The 3 160 cm-1 absorption peak that is visible in almost all samples, is often accompanied by 3 240 cm-1and 2 420 cm-1 absorption peaks, called the "3 160 group". Raman spectra show scattering peaks related to the stretching and bending vibrations of the [AlO6] group, with absorption peak at 416 cm-1 caused by symmetric bending vibrations (O-Al-Obend) showing the strongest spectral features. 3D fluorescence spectra show 4 clear fluorescence peaks and the λex=408 nm/λem=694 nm peak is the strongest one.
-
-
表 1 坦桑尼亚温扎红宝石样品的常规宝石学特征
Table 1 Conventional gemmological characteristics of ruby samples from Winza, Tanzania
样品号 颜色 光泽 透明度 折射率 相对密度 紫外荧光 二色性 长波 短波 O-1 橙粉色 亮玻璃光泽 半透明 1.760~1.768 3.89 中等红色 惰性 强黄色/粉色 O-2 橙粉色 亮玻璃光泽 透明 1.761~1.769 3.96 强红色 惰性 弱浅黄色/浅粉色 O-3 橙粉色 亮玻璃光泽 透明 1.760~1.768 3.81 强红色 惰性 强黄色/粉色 P-1 浅粉色 亮玻璃光泽 透明 1.760~1.768 3.80 中等红色 惰性 弱粉色/浅粉色 P-2 浅粉色 亮玻璃光泽 透明 1.760~1.768 4.00 中等红色 惰性 弱粉色/浅粉色 P-3 浅粉色 亮玻璃光泽 透明 1.758~1.766 3.90 中等红色 惰性 弱橙粉色/浅粉色 PR-1 紫红色 亮玻璃光泽 透明 1.760~1.768 4.00 中等红色 惰性 中等黄色/粉色 PR-2 紫红色 亮玻璃光泽 透明 1.760~1.768 4.00 中等红色 惰性 强浅粉色/紫红色 PR-3 紫红色 亮玻璃光泽 半透明 1.760~1.768 3.92 中等红色 惰性 强淡黄色/紫红色 PR-4 紫红色 亮玻璃光泽 半透明 1.761~1.769 4.02 中等红色 惰性 强橙黄色/紫红色 表 2 坦桑尼亚温扎红宝石样品的颜色与LA-ICP-MS测试结果
Table 2 The colours and testing results of LA-ICP-MS of ruby samples from Winza, Tanzania
样品号 颜色描述 MgO/% Al2O3/% SiO2/% P2O5/% TiO2/% FeO/% V/10-6 Cr/10-6 Ni/10-6 Ga/10-6 O-1 橙粉色 0.006 4 98.6 0.73 0.024 0.004 0 0.49 1.86 831 - 34.7 O-2 橙粉色 0.009 2 98.5 0.87 0.017 0.005 6 0.48 1.47 751 - 36.7 O-3 橙粉色 0.005 5 98.7 0.85 0.015 0.002 9 0.31 1.03 963 - 23.5 P-1 浅粉色 0.006 8 98.8 0.69 0.026 0.001 4 0.41 0.96 603 2.51 23.0 P-2 浅粉色 0.008 8 98.6 0.83 0.020 0.009 0 0.45 1.86 582 7.04 34.6 P-3 浅粉色 0.010 0 98.6 0.71 0.019 0.004 2 0.50 2.35 624 0.34 33.9 PR-1 紫红色 0.007 8 98.5 0.81 0.015 0.004 3 0.36 1.44 2028 0.91 24.2 PR-2 紫红色 0.009 6 98.7 0.71 0.030 0.004 8 0.30 7.45 1634 - 41.9 PR-3 紫红色 0.002 3 98.6 0.87 0.010 0.010 8 0.30 2.03 874 2.75 32.4 PR-4 紫红色 0.015 1 98.4 0.84 0.019 0.015 0 0.45 5.62 1674 6.44 29.9 注:-表示低于检测限。 表 3 坦桑尼亚温扎红宝石样品中不同色区微量元素的种类与含量
Table 3 Types and contents of ruby trace elements in different colour zones of ruby samples from Winza, Tanzania /10-6
测试点位 Mg Ti Fe Cr V Ni Ga P-1-01 0.86 26.15 2 763 400 0.97 2.69 21 P-1-02 40.65 8.58 3 202 603 0.96 2.51 23 -
[1] Fritz H, Tenczer V, Hauzenberger C A, et al. Central Tanzanian tectonic map: A step forward to decipher Proterozoic structural events in the East African Orogen[J]. Tectonics, 2005, 24(6): 1-26.
[2] 孟宪梁, 高博禹, 马宝林. 肯尼亚和坦桑尼亚宝石矿地质特征[J]. 建材地质, 1993(2): 20-23. Meng X L, Gao B Y, Ma B L. Geological characteristics of gemstone mines in Kenya and Tanzania[J]. Geology of Building Materials, 1993(2): 20-23. (in Chinese)
[3] Laurs B M, Pardieu V. Ruby and sapphire mining at Winza[J]. Gems & Gemmology, 2008, 44(2): 178-179.
[4] Giuliani G, Groat L A. Geology of corundum and emerald gem deposits: A review[J]. Gems & Gemmology, 2019, 55(4): 464-489.
[5] Peretti A. Winza rubies identified[J]. Contributions to Gemmology, 2007(7): 1-97.
[6] Peretti A. Winza ruby-Birth of a legend[EB/OL]. [2023-08-23]. https://www.edelsteine.at/en/news/winza-ruby-birth-of-a-legend/.
[7] Pardieu V, Vertriest W. Update on colored gemstone mining in Tanzania[J]. Gems & Gemmology, 2016, 52(3): 318-321.
[8] Schwarz D, Pardieu V, Saul J M, et al. Rubies and sapphires from Winza, central Tanzania[J]. Gems & Gemmology, 2008, 44(4): 322-347.
[9] Renfro N. A useful technique to identify negative crystals in ruby[J]. Gems & Gemmology, 2009, 45(3): 212.
[10] Wenqing H, Ni P, Zhou J, et al. Fluid inclusion and titanite U-Pb age constraints on the Yuanjiang ruby mineralization in the Ailao Shan-Red River Metamorphic Belt, Southwest China[J]. The Canadian Mineralogist, 2022(60): 3-28.
[11] Sutherland F L, Zaw K, Meffre S, et al. Diversity in ruby geochemistry and its inclusions: intra- and Inter- continental comparisons from Myanmar and Eastern Australia[J]. Minerals, 2019, 9(1): 28.
[12] Li E, Xu B. Gemological and chemical composition characteristics of basalt-related rubies from Chanthaburi-Trat, Thailand[J]. Crystals, 2023, 13(8): 1 179.
[13] Winotai P, Wichan T, Tang I M, et al. Heat treatments of Tanzania ruby as monitored by ESR spectroscopy[J]. International Journal of Modern Physics B, 2000, 14(16): 1 693-1 700.
[14] 沈澈. 宝石级刚玉的颜色定量研究[D]. 武汉: 中国地质大学, 2019. Shen C. Color quantification of gem corundum[D]. Wuhan: China University of Geosciences, 2019. (in Chinese)
[15] Pardieu V, Sangsawong S, Muyal J, et al. Rubies from Montepuez, Mozambique[EB/OL]. [2023-08-30]. https://www.gia.edu/gia-rubies-from-montepuez-area.
[16] Vertriest W, Saeseaw S. A decade of ruby from Mozambique: A review[J]. Gems & Gemmology, 2019, 55(2): 162-183.
[17] Dubinsky E V, Stone-Sundberg J, Emmett J L. A quantitative description of the causes of color in corundum[J]. Gems & Gemmology, 2020, 56(1): 2-28.
[18] 王庆楠. 越南安沛红宝石的宝石学特征及热处理工艺定量化研究[D]. 武汉: 中国地质大学, 2019. Wang Q N. Gemmological characteristics and quantitative study on heat treatment of ruby from Yen Bai Province, Northern Vietnam[D]. Wuhan: China University of Geosciences, 2019. (in Chinese)
[19] 刘学良. 云南红宝石的宝石学特征及改善工艺研究[D]. 上海: 华东理工大学, 2011. Liu X L. Research on gemological characteristics and enhancement process of rubies from Yunan Province[D]. Shanghai: East China University of Science and Technology, 2011. (in Chinese)
[20] 范建良, 郭守国, 刘学良, 等. 拉曼光谱在红宝石检测中的应用研究[J]. 应用激光, 2008(2): 150-154. Fan J L, Guo S G, Liu X L, et al. Application of Raman spectroscopy in ruby identification[J]. Applied Laser, 2008(2): 150-154. (in Chinese)
[21] Kadleíková M, Breza J, Vesely M. Raman spectra of synthetic sapphire[J]. Microelectronics Journal, 2001, 32(12): 955-958.
[22] Kazuko S, Masumi S. Amphibole mineral inclusions in Mozambique ruby[J]. Gems & Gemmology, 2021, 57(2): 154-156.
[23] Peretti A, Schmetzer K, Bernhardt H J, et al. Rubies from Mong Hsu[J]. Gems & Gemmology, 1995, 31(1): 2-26.
[24] 王庆楠, 狄敬如. 越南安沛红宝石包裹体特征及其成分[J]. 宝石和宝石学杂志(中英文), 2018, 20(S1): 11-15. Wang Q N, Di J R. Inclusion of ruby from Yen Bai, Vietnam[J]. Journal of Gems & Gemmology, 2018, 20(S1): 11-15. (in Chinese)
[25] Kane R E, McClure S F, Kammerling R C, et al. Rubies and fancy sapphires from Vietnam[J]. Gems & Gemmology, 1991, 27(3): 136-155.
[26] Smith C P. Infrared spectra of gem corundum[J]. Gems & Gemmology, 2006, 42(3): 92-93.