Gemmological Characteristic of "Yongchuliao" Feicui (Jade) from Guatemala
-
摘要:
危地马拉“永楚料”翡翠是近年来中国翡翠市场上出现的新品种,其颜色多为深绿色。本文收集了4件危地马拉“永楚料”翡翠成品和1件原石样品,在常规宝石学测试的基础上,通过红外光谱、激光拉曼光谱、紫外-可见光谱和电子探针等测试技术对其化学成分、谱学特征和颜色成因等进行了分析与讨论。结果显示:危地马拉“永楚料”翡翠样品的折射率为1.66~1.67(点测),相对密度为3.33~3.34,玻璃光泽,长短波紫外光下均为荧光惰性;红外光谱表明样品的主要矿物为绿辉石,成分均匀;拉曼光谱表明样品中的绿辉石为P2/n型结构,其他物相包括榍石和无定形碳,榍石常具“网脉状”截面;紫外-可见光谱出现437 nm和636、658、688 nm处吸收峰,分别由Fe3+和Cr3+所致。“永楚料”翡翠在自然光下的体色由Cr3+主导,Fe2+以及Fe2+—Fe3+间的电荷转移参与影响;电子探针计算得出“永楚料”翡翠中绿辉石的平均化学式为(Na0.50Ca0.49)0.99(Mg0.46Fe0.08Al0.48Cr0.01)1.03。“永楚料”翡翠样品更富Mg贫Fe元素,其更高含量的Cr元素及副矿物以榍石为主的特征有别于危地马拉和缅甸墨翠。
Abstract:In recent years, a new variety of Feicui (also translated as jade) named "Yongchuliao" has emerged in Chinese markets. This kind of Feicui with a dark green colour is from Guatemala. In this study, the authors collected 4 pieces of "Yongchuliao" products and 1 piece of rough stone. The conventional gemmological characteristics, chemical composition, spectral characteristics, and colour origin of the "Yongchuliao" samples have been tested, analyzed and discussed through infrared absorption spectra, laser Raman spectra, UV-Vis spectra, and electron probe micro-analysis, respectively. The results showed that the refractive index of "Yongchuliao" samples falls between 1.66-1.67 (point measurement), with a specific gravity of 3.33-3.34, presenting a glass luster and inert fluorescence under both long wave and short wave ultraviolet light. Infrared spectra revealed that the main mineral of the "Yongchuliao" samples are omphacite, and the composition of omphacite has remarkable consistency. Raman spectra showed that the crystal structure of this type of omphacite is P2/n, and other phases in "Yongchuliao" samples include titanite and amorphous carbon. Moreover, titanite often has a "reticulated cross" section. UV-Vis spectra exhibited characteristic peaks at 437 nm (caused by Fe3+), and 636, 658, 688 nm (caused by Cr3+). And the colour of "Yongchuliao" under natural light is primarily influenced by Cr3+ and is also affected by both Fe2+ and the charge transfer between Fe2+ and Fe3+. The average chemical formula of "Yongchuliao" according to the results of electron probe micro-analysis is (Na0.50Ca0.49)0.99(Mg0.46Fe0.08Al0.48Cr0.01)1.03. In addition, "Yongchuliao" is richer in Mg and poorer in Fe. A higher content of Cr makes it distinguishable from Guatemalan Mocui. "Yongchuliao" with only titanite as its accessory mineral is also different from Mocui from Myanmar and Guatemala.
-
Keywords:
- "Yongchuliao" Feicui (jade) /
- omphacite /
- gemmological characteristic /
- Guatemala
-
-
图 6 危地马拉“永楚料”翡翠样品中榍石的微形貌特征:(a)聚集了团块状榍石的区域;(b)团块状榍石;(c)背散射电子图像中榍石的“网脉状”截面;(d)显微拉曼图像中榍石的“网脉状”截面
Figure 6. Micromorphological characteristics of titanite in "Yongchuliao" Feicui samples from Guatemala: (a)area having clumps of titanite; (b)clumps of titanite; (c)"reticulated cross" section of titanite observed in backscatter electron image; (d)"reticulated cross" section of titanite observed in Raman image
图 12 危地马拉“永楚料”翡翠样品和缅甸及危地马拉墨翠在Ae-Jd-Quad三元图解上的位置[4, 7, 28]
注:Quad-硅灰石、顽辉石和铁辉石(即Ca-Mg-Fe辉石);Omp-绿辉石,Agt-霓辉石,Jd-硬玉,Ae-霓石;墨翠的EDXRF数据来自Biqian Xing等[4],电子探针数据来自严若谷等[28],底图来自N.Morimoto等[7]
Figure 12. The position of "Yongchuliao" Feicui samples from Guatemala and Mocui from Myanmar and Guatemala in Ae-Jd-Quad ternary diagram
表 1 危地马拉“永楚料”翡翠样品中主要矿物的半定量Na/(Ca+Na)值
Table 1 The semiquantitative Na/(Ca+Na) values of main minerals in "Yongchuliao" Feicui samples from Guatemala
样品号 Na/(Ca+Na) 主要矿物 YC-1 0.583 绿辉石 YC-2 0.596 绿辉石 YC-3 0.555 绿辉石 YC-4 0.607 绿辉石 YC-5 0.567 绿辉石 表 2 危地马拉“永楚料”翡翠样品主要矿物的成分数据
Table 2 Chemical compositions of main minerals in "Yongchuliao" Feicui samples from Guatemala
YC-5平均值 YC-5-1 YC-5-2 YC-5-3 YC-3平均值 YC-3-1 YC-3-2 YC-3-3 SiO2/% 57.02 57.73 57.18 56.15 56.06 56.80 56.23 55.16 TiO2/% 0.11 0.11 0.09 0.14 0.22 0.14 0.07 0.44 Al2O3/% 12.77 12.57 12.88 12.87 11.07 12.17 10.02 11.01 Cr2O3/% 0.34 0.28 0.36 0.37 0.15 0.04 0.35 0.07 FeO/% 2.42 2.41 2.33 2.53 2.81 2.63 2.82 2.97 MnO/% 0.09 0.02 0.11 0.14 0.13 0.12 0.18 0.08 MgO/% 7.94 7.72 8.02 8.07 9.05 8.83 9.33 8.98 CaO/% 12.19 12.47 11.85 12.24 13.69 12.85 14.03 14.20 Na2O/% 7.53 7.18 7.66 7.74 7.05 6.98 6.73 7.43 K2O/% 0.04 0.04 0.01 0.07 — — — 0.01 Total/% 100.49 100.53 100.49 100.44 100.33 100.56 99.87 100.57 令O=6时计算的阳离子数 Si 1.994 2.013 1.997 1.973 1.982 1.989 1.999 1.957 Ti 0.003 0.003 0.002 0.004 0.006 0.004 0.002 0.012 Al 0.526 0.517 0.530 0.533 0.461 0.502 0.420 0.460 TAl 0.006 — 0.003 0.027 0.018 0.011 0.001 0.043 Cr 0.009 0.008 0.010 0.010 0.004 0.001 0.010 0.002 Fe2+ 0.064 0.063 0.058 0.053 0.070 0.076 0.068 0.066 Fe3+ 0.007 0.008 0.010 0.021 0.013 0.001 0.016 0.022 Mn 0.003 0.001 0.003 0.004 0.004 0.004 0.005 0.002 Mg 0.414 0.401 0.418 0.423 0.477 0.461 0.495 0.475 Ca 0.457 0.466 0.443 0.461 0.519 0.482 0.534 0.540 Na 0.510 0.485 0.519 0.527 0.483 0.474 0.464 0.511 K 0.001 0.001 — 0.002 — — — — O 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 晶体化学式中端员组分的相对含量(mol%) Ko 0.009 0.008 0.010 0.010 0.004 0.001 0.010 0.002 Jd 0.495 0.472 0.504 0.506 0.443 0.465 0.419 0.417 Ae — — — 0.004 0.025 — 0.031 0.069 Fs 0.035 0.035 0.034 0.035 0.029 0.039 0.026 0.010 Wo 0.226 0.233 0.220 0.217 0.250 0.235 0.267 0.248 En 0.205 0.199 0.208 0.209 0.235 0.229 0.246 0.231 Quad 0.466 0.467 0.462 0.462 0.515 0.502 0.539 0.489 -
[1] GB/T 16553—2017珠宝玉石鉴定[S]. 北京: 中国标准出版社, 2017. GB/T 16553-2017 Gems-Testing[S]. Beijing: Standards Press of China, 2017. (in Chinese)
[2] 徐泽彬, 徐志, 邓常劼, 等. "永楚料"翡翠的宝石学研究[J]. 宝石和宝石学杂志(中英文), 2014, 16(6): 43-46. doi: 10.3969/j.issn.1008-214X.2014.06.008 Xu Z B, Xu Z, Deng C J, et al. Gemological study on jadeitecalled "Yongchuliao" in jewelry trade[J]. Journal of Gems & Gemmology, 2014, 16(6): 43-46. (in Chinese) doi: 10.3969/j.issn.1008-214X.2014.06.008
[3] 战祥浩, 马坡, 杨蕾琪, 等. "永楚料"翡翠的宝石学性质研究[J]. 昆明理工大学学报(自然科学版), 2018, 43(1): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201801005.htm Zhan X H, Ma P, Yang L Q, et al. Gemological study on "Yongchuliao" jadeite[J]. Journal of Kunming University of Science and Technology (Natural Science), 2018, 43(1): 20-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201801005.htm
[4] Xing B, Shi G, Long T, et al. Locality determination of inky black omphacite jades from Myanmar and Guatemala by nondestructive analysis[J]. Journal of Raman spectroscopy, 2022, 53(11): 2009-2018. doi: 10.1002/jrs.6436
[5] 王亚军, 石斌, 袁心强, 等. 缅甸翡翠化学成分的变化对其红外光谱的影响[J]. 光谱学与光谱分析, 2015, 35(8): 2094-2098. doi: 10.3964/j.issn.1000-0593(2015)08-2094-05 Wang Y J, Shi B, Yuan X Q, et al. The impacts of the variation of Myanmar jade component on its infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2015, 35(8): 2094-2098. (in Chinese) doi: 10.3964/j.issn.1000-0593(2015)08-2094-05
[6] Ballaran T B, Carpenter M A, Domeneghetti M C, et al. Hard mode infrared spectroscopy of cation ordering and substitution in a chain silicate[J]. Phase transitions, 1997, 63(1-4): 159-170. doi: 10.1080/01411599708228793
[7] Morimoto N. Nomenclature of pyroxenes[J]. Mineralogy & Petrology, 1988, 52(1): 535-550.
[8] 王濮. 系统矿物学[M]. 北京: 地质出版社, 1982. Wang P. Systematic mineralogy[M]. Beijing: Geological Publishing House, 1982. (in Chinese)
[9] 王礼胜, 张海衡, 刘静怡, 等. 危地马拉高档绿色翡翠的矿物组成及成因[J]. 宝石和宝石学杂志(中英文), 2022, 24(5): 11-30. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202205002.htm Wang L S, Zhang H H, Liu J Y, et al. Mineral component and genesis of high-grade green jadeite jade from Guatemala[J]. Journal of Gems & Gemmology, 2022, 24(5): 11-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202205002.htm
[10] Harlow G E. Jadeitites, albitites and related rocks from the Motagua Fault Zone, Guatemala[J]. Journal of Metamorphic Geology, 2010, 12(1): 49-68.
[11] Katerinopoulou A, Musso M, Amthauer G. A Raman spectroscopic study of the phase transition in omphacite[J]. Vibrational Spectroscopy, 2008, 48(2): 163-167. doi: 10.1016/j.vibspec.2007.12.015
[12] 陈全莉, 尹作为, 卜玥文, 等. 拉曼光谱在危地马拉翡翠矿物组成中的应用研究[J]. 光谱学与光谱分析, 2012, 32(9): 2447-2451. doi: 10.3964/j.issn.1000-0593(2012)09-2447-05 Chen Q L, Yin Z W, Bu Y W, et al. Raman spectroscopy studyon the mineral composition of the Guatemalan jade[J]. Spectroscopy and Spectral Analysis, 2012, 32(9): 2447-2451. (in Chinese) doi: 10.3964/j.issn.1000-0593(2012)09-2447-05
[13] Huang E, Chen C H, Huang T, et al. Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes[J]. American Mineralogist, 2000, 85(3-4): 473-479. doi: 10.2138/am-2000-0408
[14] Matsumoto T, Tokonami M, Morimoto N. The crystal structure of omphacite[J]. The American mineralogist, 1975, 60(7-8): 634-641.
[15] Zachariasen W H. The crystal structure of titanite[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1930, 1-6(73): 7-16.
[16] Su Y, Balmer M L, Bunker B C. Raman spectroscopic studies of silicotitanates[J]. Journal of Physical Chemistry B, 2000, 104(34): 8160-8169. doi: 10.1021/jp0018807
[17] Heyns A M, Harden P M, Prinsloo L C. Resonance Raman study of the high-pressure phase transition in chromium-doped titanite, CaTiOSiO4[J]. Journal of Raman Spectroscopy, 2000, 31(1): 837-841.
[18] Zhang M, Salje E K, Redfern S A, et al. Intermediate structures in radiation damaged titanite (CaTiSiO5): A Raman spectroscopic study[J]. Journal of Physics: Condensed Matter, 2013, 25(11): 115-402.
[19] 李东风, 王浩静, 王心葵. PAN基碳纤维在石墨化过程中的拉曼光谱[J]. 光谱学与光谱分析, 2007, 27(11): 2249-2253. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200711026.htm Li D F, Wang H J, Wang X K. Raman spectra of PAN-Based carbon fibers during graphitization[J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2249-2253. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200711026.htm
[20] 张超群, 陈美华, 邹昱. 控温梯度及时间对合成翡翠品质的影响[J]. 宝石和宝石学杂志(中英文), 2022, 24(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202201006.htm Zhang C Q, Chen M H, Zou Y. Effect of temperature control gradient and time on quality of synthetic jadeite[J]. Journal of Gems & Gemmology, 2022, 24(1): 58-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202201006.htm
[21] 袁心强, 亓利剑, 杜广鹏, 等. 缅甸翡翠紫外-可见-近红外光谱的特征和意义[J]. 宝石和宝石学杂志(中英文), 2003, 5(4): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200304003.htm Yuan X Q, Qi L J, Du G P, et al. UV-Vis-NIR spectrum of jadeite jade from Burma[J]. Journal of Gems & Gemmology, 2003, 5(4): 11-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200304003.htm
[22] 谢先德. 中国宝玉石矿物物理学[M]. 广州: 广东科技出版社, 1999. Xie X D. Mineral physics of gems and jade in China[M]. Guangzhou: Guangdong Science and Technology Press, 1999. (in Chinese)
[23] Morimoto N, 黄婉康. 辉石命名法[J]. 矿物学报, 1988, 8(4): 289-305. doi: 10.3321/j.issn:1000-4734.1988.04.001 Morimoto N, Huang W K. Nomenclature of pyroxenes[J]. Acta Minerologica Sinica, 1988, 8(4): 289-305. (in Chinese) doi: 10.3321/j.issn:1000-4734.1988.04.001
[24] Ng Y N, Shi G H, Santosh M. Titanite-bearing omphacitite from the Jade Tract, Myanmar: Interpretation from mineral and trace element compositions[J]. Journal of Asian Earth Sciences, 2016, 117(1): 1-12.
[25] Scibiorski E A, Cawood P A. Titanite as a petrogenetic indicator[J]. Terra Nova, 2021, 34(3): 177-183.
[26] Harlow G E, Quinn E P, Rossman G R, et al. Blue omphacite from Guatemala[J]. Gems & Gemmology, 2004, 1(40): 68-70.
[27] 郝允祥, 陈遐举, 张保洲. 光度学[M]. 北京: 中国计量出版社, 2010. Hao Y X, Chen X J, Zhang B Z. Photometry[M]. Beijing: China Metrology Press, 2010. (in Chinese)
[28] 严若谷, 丘志力, 董传万, 等. 世界几个主要翡翠产地墨翠标型特征初探[J]. 岩石矿物学杂志, 2009, 28(3): 292-298. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200903012.htm Yan R G, Qiu Z L, Dong C W, et al. A preliminary study of typomorphic characteristics of different kinds of black jadeite jades in the world[J]. Acta Petrologicaet Mineralogica, 2009, 28(3): 292-298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200903012.htm