基于SICAS模型的珠宝直播的营销效果研究

邝演锋, 周琦深, 刘浩, 王甜甜, 赵曼存, 谢雨菲

邝演锋, 周琦深, 刘浩, 王甜甜, 赵曼存, 谢雨菲. 基于SICAS模型的珠宝直播的营销效果研究[J]. 宝石和宝石学杂志(中英文), 2024, 26(1): 88-98. DOI: 10.15964/j.cnki.027jgg.2024.01.010
引用本文: 邝演锋, 周琦深, 刘浩, 王甜甜, 赵曼存, 谢雨菲. 基于SICAS模型的珠宝直播的营销效果研究[J]. 宝石和宝石学杂志(中英文), 2024, 26(1): 88-98. DOI: 10.15964/j.cnki.027jgg.2024.01.010
KUANG Yanfeng, ZHOU Qishen, LIU Hao, WANG Tiantian, ZHAO Mancun, XIE Yufei. Research on the Effect of Jewelry Live Broadcast Marketing Based on SICAS Model[J]. Journal of Gems & Gemmology, 2024, 26(1): 88-98. DOI: 10.15964/j.cnki.027jgg.2024.01.010
Citation: KUANG Yanfeng, ZHOU Qishen, LIU Hao, WANG Tiantian, ZHAO Mancun, XIE Yufei. Research on the Effect of Jewelry Live Broadcast Marketing Based on SICAS Model[J]. Journal of Gems & Gemmology, 2024, 26(1): 88-98. DOI: 10.15964/j.cnki.027jgg.2024.01.010

基于SICAS模型的珠宝直播的营销效果研究

详细信息
    作者简介:

    邝演锋(1995-),女,硕士研究生,主要从事宝石学研究工作。E-mail:1027100207@qq.com

    通讯作者:

    周琦深(1983-),男,副教授,主要从事高端珠宝市场研究工作。E-mail:zqs@cug.edu.cn

  • 中图分类号: TS93;F713

Research on the Effect of Jewelry Live Broadcast Marketing Based on SICAS Model

  • 摘要:

    随着用户消费决策行为和传播环境的不断改变,珠宝直播营销模式的劣势正逐步凸显出来,如获客成本逐渐升高,品牌化弱和退货率持续走高。目前学术界主要集中在普通产品和服务的直播研究,对珠宝这种高价值高风险的商品研究较少。为验证珠宝直播营销效果的影响因素,丰富珠宝直播电商用户购买行为的研究,本文基于SICAS模型的感知维度、互动维度、交互维度、购买维度和分享维度构建了珠宝直播营销效果评价模型,探究珠宝直播营销效果的各项因子影响权重排序,提高珠宝企业开展直播营销的效果。研究结果表明:(1)用户在珠宝直播营销过程中的感知、交互、购买和分享这四个维度上的认知和体验,会显著影响用户对珠宝直播营销效果的评价,影响权重排序为:交互维度>分享维度>购买维度>感知维度,但互动维度并没有显著影响;(2)用户的月收入和职业属性会显著影响用户对珠宝直播营销效果的评价,但性别和年龄没有显著影响。基于以上讨论,在未来的珠宝直播营销中,丰富和提高社区沟通、提升用户的购买体验、激发用户的分享行为和降低用户的感知风险是增强珠宝直播营销效果的关键。

    Abstract:

    With the changes in user consumption behavior and online communication environment, the disadvantages of live jewelry e-commerce are becoming more prominent, including the gradual increase in customer acquisition costs, weak branding and high return rates. At the same time, the current researches mainly focuses on the live e-commerce of ordinary products and services, and there are few studies on high-value and high-risk commodities such as jewelry. In order to verify the influencing factors of jewelry live broadcast marketing and enrich the research on consumer behavior, this study creates an evaluation model of jewelry live broadcast marketing effect based on 5 dimensions of the SICAS model including: sense, interest and interactive, connect and communication, action, and sharing to explore the ranking of factors affecting the jewelry live broadcast marketing and improving the marketing effect of jewelry companies. The results show that: (1) Users' cognition and experience of sense, interest and interactive, action and sharing will significantly affect users' evaluation of the marketing effect of jewelry live broadcast marketing, and the influence are ranked as follows: connect and communication>sharing > action > sense, while interest and interactive has no significant influence. (2) Users' monthly income and occupation will significantly affect users' evaluation of jewelry live broadcast marketing effect, but gender and age not. To enhance the effectiveness of jewelry live broadcast marketing in the future, it is necessary to enrich the communications with users, enhance users' purchasing experience, stimulate users' sharing behavior and reduce users' perceived risk for jewelry companies.

  • 图  1   SICAS模型的理论机制

    Figure  1.   Theoretical mechanism of SICAS model

    图  2   珠宝直播营销效果的评价模型

    Figure  2.   Users' evaluation model of jewelry live broadcast marketing effect

    图  3   研究模型路径系数及其显著性水平

    Figure  3.   Research model path coefficient and its significance level

    图  4   珠宝直播的社会感知率和社会观看率(样本数据)

    Figure  4.   Social perception rate and social viewing rate of jewelry live broadcast(date samples)

    表  1   评价模型中五个维度的定义及来源

    Table  1   Variables' definitions and sources of the evaluation model

    维度 定义 来源
    感知 消费者对珠宝直播相关信息的接收、理解及产生认知的过程 袁光辉(2020)
    互动 用户在珠宝直播中与其他主体之间的互动行为,其他主体包括:
    平台、品牌/企业/商家、主播、其他消费者
    Dongwon L(2015);Wang C, et al.(2015);范小军(2020)
    交互 用户在社交平台上与企业/品牌或其他用户对珠宝直播相关内容进行信息交互的行为 Kiousis S(2002);孙璐(2016)
    购买 消费者在直播平台上获取珠宝首饰消费信息、做出购买决策、
    完成购买和购买后使用等消费行为
    Sassatelli R(2007)
    分享 消费者通过社交媒体发布并接收,来自自己或其他个体针对某个
    珠宝品牌/企业/商品/服务所形成的感受/经历/认知的行为
    张赛(2013);李文明(2014)
    下载: 导出CSV

    表  2   量表题项及来源

    Table  2   Scale items and Sources

    变量 编码 潜变量 题项 来源
    感知维度 S1 感知量 您经常看到有关珠宝直播的营销广告 Sweeney J C, et al.(2001)
    S2 感知效率 您经常通过广告的链接进入珠宝直播间 Sweeney J C, et al.(2001)
    互动维度 I1 同步性 您能轻松获得有关珠宝直播的相关营销信息 Qin G, et al.(2010)
    I2 响应性 您愿意让主播了解您的珠宝首饰需求和偏好 Qin G, et al.(2010)
    I3 主动性 您愿意主动与珠宝主播进行交流互动 Qin G, et al.(2010)
    I4 娱乐性 您感觉在珠宝直播间的互动体验是轻松愉悦的 Qin G, et al.(2010)
    I5 响应性 您愿意给珠宝直播间提供建议,帮助其提高服务质量 Qin G, et al.(2010)
    交互维度 C1 顾客价值 您觉得珠宝直播的营销形式新颖、内容有趣 Qin G, et al.(2010)
    C2 交互响应 您愿意参与珠宝直播的相关话题讨论 Qin G, et al.(2010)
    C3 顾客授权 您愿意接受与珠宝直播相关的消息推送 孙璐(2016)
    购买维度 A1 购买意愿 您认为能通过直播购买到令人满意的珠宝首饰 Zeithaml V A(1988)
    A2 下单购买 您会通过直播间购买珠宝首饰 Park H J, et al. (2020)
    A3 购后反馈 通过直播间购买珠宝是令您感到轻松愉悦的 Zeithaml V A(1988)
    分享维度 SS1 情感性 您觉得珠宝直播是值得信任的 Zeithaml V A, et al.(1996);
    Park H J, et al.(2020)
    SS2 社交货币性 您会跟他人分享您通过直播间买到的珠宝首饰 Zeithaml V A, et al.(1996);
    Park H J, et al.(2020)
    SS3 社交货币性 您经常向他人分享珠宝直播 Zeithaml V A,et al.(1996);
    Park H J, et al.(2020)
    SS4 实用价值性 您鼓励他人通过观看直播购买珠宝首饰 Zeithaml V A,et al.(1996)
    下载: 导出CSV

    表  3   样本描述性统计表

    Table  3   Sample descriptive statistics

    类别 人数 百分比/%
    性别 152 36.54
    264 63.46
    年龄 ≤ 18岁 4 0.96
    18~22岁 62 14.90
    22~27岁 153 36.78
    27~32岁 115 27.64
    32~42岁 54 12.98
    42~52岁 23 5.53
    52~62岁 4 0.96
    ≥62岁 1 0.24
    月收入 1500元以下 46 11.06
    1500~3000元 86 20.67
    3000~5000元 79 18.99
    5000~1万 112 26.92
    1万~2万 57 13.70
    2万~5万 23 5.53
    5万~10万 4 0.96
    10万以上 9 2.16
    职业 在校学生 98 23.56
    职员 146 35.10
    专业技术人员 67 16.11
    第三产业服务人员 14 3.37
    公务员 23 5.53
    产业工人 4 0.96
    家庭主妇 2 0.48
    私营企业主 12 2.88
    自由职业者 47 11.30
    离退休人员 3 0.72
    合计 416 100.00
    下载: 导出CSV

    表  4   探索性因子分析结果

    Table  4   Results of exploratory factor analysis

    编码 因子1 因子2 因子3 因子4 因子5 共同度 标准载荷系数
    (Std. Estimate)
    S1 0.826 0.833 0.640
    S2 0.534 0.618 0.732
    I1 0.710 0.682 0.717
    I2 0.668 0.678 0.762
    I3 0.626 0.689 0.736
    I4 0.562 0.623 0.712
    I5 0.507 0.673 0.741
    C1 0.734 0.764 0.723
    C2 0.624 0.702 0.759
    C3 0.575 0.658 0.723
    A1 0.766 0.740 0.701
    A2 0.624 0.716 0.823
    A3 0.630 0.737 0.774
    SS1 0.609 0.709 0.813
    SS2 0.576 0.698 0.782
    SS3 0.756 0.768 0.756
    SS4 0.789 0.778 0.780
    特征根值(旋转前) 8.949 0.921 0.839 0.716 0.642
    方差解释率(旋转前)/% 52.64% 5.42% 4.94% 4.21% 3.78%
    累积方差解释率(旋转前)/% 52.64% 58.06% 62.99% 67.20% 70.98%
    特征根值(旋转后) 2.945 2.814 2.372 2.306 1.629
    方差解释率(旋转后)/% 17.33% 16.55% 13.95% 13.57% 9.58%
    累积方差解释率(旋转后)/% 17.33% 33.88% 47.83% 61.40% 70.98%
    KMO值为0.960;巴特球形值为4 033.708;DF值为136;P=0.000
    下载: 导出CSV

    表  5   验证性因子分析结果

    Table  5   Results of confirmatory factor analysis

    AVE值 CR值 感知 互动 交互 购买 分享
    感知 0.503 0.711 (0.709)
    互动 0.538 0.854 0.679 (0.733)
    交互 0.540 0.779 0.659 0.730 (0.734)
    购买 0.589 0.811 0.555 0.690 0.721 (0.768)
    分享 0.613 0.864 0.641 0.687 0.720 0.721 (0.783)
    备注:括号处为AVE平方根值
    下载: 导出CSV

    表  6   模型拟合度指标

    Table  6   Model fit index

    项目 拟合指标 指标数值 最优标准 拟合情况
    综合拟合度 χ2/DF 2.196 <3.0 拟合理想
    绝对拟合度 GFI 0.938 >0.9 拟合理想
    RMSEA 0.054 <0.1 拟合理想
    RMR 0.032 <0.05 拟合理想
    增值拟合度 CFI 0.967 >0.9 拟合理想
    NFI 0.942 >0.9 拟合理想
    TLI 0.959 >0.9 拟合理想
    IFI 0.967 >0.9 拟合理想
    Default Model: χ2(136)=2 867.228, P=1.000
    下载: 导出CSV

    表  7   人口学变量的差异比较结果

    Table  7   Comparative results of differences in demographic variables

    选项 结果 珠宝直播电商的营销效果 感知维度 互动维度 交互维度 购买维度 分享维度
    性别 T -0.550 -1.833 -1.674 -1.394 -1.059 -1.086
    P 0.582 0.067 0.095 0.164 0.290 0.278
    年龄 F 1.739 1.691 0.865 0.556 0.854 1.022
    P 0.098 0.109 0.534 0.792 0.543 0.415
    月收入 F 2.892 1.282 1.318 2.021 3.504 2.924
    P 0.006** 0.258 0.240 0.051 0.001** 0.005**
    职业 F 4.322 2.554 4.529 4.329 7.715 5.151
    P 0.000** 0.007** 0.000** 0.000** 0.000** 0.000**
    *P<0.05;**P<0.01
    下载: 导出CSV

    表  8   排除控制变量后的多元线性回归分析结果

    Table  8   Results of multiple linear regression analysis after excluding control variables

    模型 非标准化系数B 标准错误 标准化系数Beta t 显著性 VIF
    自变量 (常量) 1.245 .199 6.250 .000
    感知维度 .129 .055 .131 2.357 .019 2.183
    互动维度 -.068 .075 -.063 -.908 .365 3.395
    交互维度 .248 .069 .234 3.608 .000 2.982
    购买维度 .229 .067 .220 3.449 .001 2.879
    分享维度 .170 .060 .183 2.812 .005 2.992
    控制变量 月收入 1 500元以下 0
    1 500~3 000元 -.209 .123 -.099 -1.698 .090 2.415
    3 000~5 000元 -.026 .136 -.012 -.192 .848 2.784
    0.5~1万元 -.032 .136 -.017 -.233 .816 3.549
    1~2万元 -.158 .149 -.064 -1.059 .290 2.553
    2~5万元 -.266 .184 -.071 -1.444 .149 1.729
    5~10万元 -.138 .354 -.016 -.390 .697 1.161
    10万元以上 -.568 .250 -.097 -2.266 .024 1.292
    职业性质 在校学生 0
    职员 -.111 .106 -.062 -1.047 .296 2. 498
    专业技术人员 .090 .125 .039 .715 .475 2.065
    第三产业服务人员 -.247 .192 -.052 -1.286 .199 1.171
    事业单位人员 .034 .167 .009 .204 .838 1.412
    产业工人 -.148 .343 -.017 -.432 .666 1.091
    家庭主妇 1.060 .468 .086 2.264 .024 1.021
    私营企业主 .119 .218 .023 .546 .586 1.299
    自由职业者 -.102 .127 -.038 -.804 .422 1.579
    离退休人员 -.694 .392 -.069 -1.769 .078 1.073
    R方值为0.443;D-W值为1.922;F=14.905;P<0.001
    下载: 导出CSV
  • [1] 秦佳怡. 电商直播营销传播模式研究——以淘宝直播为例[D]. 上海: 华东师范大学, 2020.

    Qin J Y. Research on the marketing communication mode of e-commerce live streaming—Taobao live as an example[D]. Shanghai: East China Normal University, 2020. (in Chinese)

    [2] 秦卓亚. 珠宝首饰购买行为研究[D]. 北京: 中国地质大学, 2017.

    Qin Z Y. A study on the consumption behavior of jewelery[D]. Beijing: China University of Geosciences, 2017. (in Chinese)

    [3] 张云鹏, 陈化飞, 庄国庆. 基于移动端的珠宝营销竞争优势研究[J]. 特区经济, 2018(2): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-TAJJ201802024.htm

    Zhang Y P, Chen H F, Zhuang G Q. Research on competitive advantage of jewelry marketing based on mobile terminal[J]. Special Zone Economy, 2018(2) : 75-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TAJJ201802024.htm

    [4] 苏钧伟. 感知利得、感知风险对线上文玩消费者购买意愿影响研究[D]. 杭州: 浙江财经大学, 2021.

    Su J W. Research on the impact of perceived benefits and perceived risks on online collectable consumers' purchase intention[D]. Hangzhou: Zhejiang University of Finance & Economics, 2021. (in Chinese)

    [5] 杨淮牟. 基于4Cs营销理论的大学生珠宝首饰消费市场营销策略研究[J]. 现代商业, 2019 (22): 9-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XDBY201922003.htm

    Yang H M. Research on the marketing strategy of college students' jewelry consumption based on 4Cs marketing theory[J]. Modern Business, 2019(22): 9-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDBY201922003.htm

    [6] 陈道志. 信息碎片化背景下的用户消费行为模式探析[J]. 前沿科学, 2013, 7(4): 36-44. https://www.cnki.com.cn/Article/CJFDTOTAL-QYKX201304005.htm

    Chen D Z. Patterns of consumer behavior under user information fragmentation background[J]. Frontier Science, 2013, 7(4): 36-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QYKX201304005.htm

    [7] 聂勇浩, 罗景月. 感知有用性、信任与社交网站用户的个人信息披露意愿[J]. 图书情报知识, 2013(5): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TSQC201305011.htm

    Nie Y H, Luo J Y. Perceived usefulness, trust and personal information disclosure intention of social networking site users information[J]. Documentation, Information & Knowledge, 2013(5): 89-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TSQC201305011.htm

    [8] 金立印. 消费者企业认同感对产品评价及行为意向的影响[J]. 南开管理评论, 2006(3): 16-21. doi: 10.3969/j.issn.1008-3448.2006.03.004

    Jin L Y. The effects of consumers' company identification on their evaluation of products and behavioral responses[J]. Nankai Business Review, 2006(3): 16-21. (in Chinese) doi: 10.3969/j.issn.1008-3448.2006.03.004

    [9] 钟凯. 网络消费者感知价值对购买意愿影响的研究[D]. 沈阳: 辽宁大学, 2013.

    Zhong K. Research on perceived value influencing online consumers' purchase intention[D]. Shenyang: Liaoning University, 2013. (in Chinese)

    [10] 刘娅娅, 李爽, 李晓彤. 基于电商数据的网购感知风险测度及消费者行为分析[J]. 统计与管理, 2020, 35(11): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TNGL202011015.htm

    Liu Y Y, Li S, Li X T. Online shopping perceived risk measurement and consumer behavior analysis based on e-commerce data[J]. Statistics and Management, 2020, 35 (11): 77-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TNGL202011015.htm

    [11] 贾晓锋. 电商直播平台消费者购买及融入意愿研究[D]. 北京: 北京邮电大学, 2019.

    Jia X F. Exploring consumers' purchase and engagement intention on e-commerce live streaming platform[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese)

    [12] 陈欢. 网购环境下消费者感知价值与感知风险问题研究综述[J]. 投资与创业, 2022, 33(23): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCY202223012.htm

    Chen H. Research review on consumer perceived value and perceived risk in online shopping environment[J]. Investment and Entrepreneurship, 2022, 33 (23): 35-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TZCY202223012.htm

    [13] 吴娜. 直播营销中主播沟通风格对购买意愿的影响——基于"人、货、场"视角[D]. 武汉: 中南财经政法大学, 2021.

    Wu N. The influence of anchors'communication style on purchase intention in live streaming marketing——Based on the perspectives of "people, product and scene"[D]. Wuhan: Zhongnan University of Economics and Law, 2021. (in Chinese)

    [14] 范小军, 蒋欣羽, 倪蓉蓉, 等. 移动视频直播的互动性对持续使用意愿的影响[J]. 系统管理学报, 2020, 29(2): 294-307. https://www.cnki.com.cn/Article/CJFDTOTAL-XTGL202002018.htm

    Fan X J, Jiang X Y, Ni R R, et al. Influence of interactivity of mobile live-video broadcast on intention of continuous use of users[J]. Journal of Systems & Management, 2020, 29 (2) : 294-307. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTGL202002018.htm

    [15] 喻昕, 许正良. 网络直播平台中弹幕用户信息参与行为研究——基于沉浸理论的视角[J]. 情报科学, 2017, 35(10): 147-51. https://www.cnki.com.cn/Article/CJFDTOTAL-QBKX201710027.htm

    Yu X, Xu Z L. The theoretical model of bullet screen users' participative behavior in network broadcast platform—Based on the perspective of flow theory[J]. Information Science, 2017, 35 (10) : 147-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QBKX201710027.htm

    [16] 姒琪莹. 中国互联网搜索引擎市场结构、产业环境及竞争趋势分析[J]. 东南传播, 2010(9): 40-43. doi: 10.3969/j.issn.1672-9579.2010.09.012

    Si Q Y. Analysis of China's internet search engine market structure, industry environment and competition trend[J]. Southeast Communication, 2010(9): 40-43. (in Chinese) doi: 10.3969/j.issn.1672-9579.2010.09.012

    [17]

    Lyu Z P, Jin Y, Huang J H. How do sellers use live chat to influence consumer purchase decision in China?[J]. Electronic Commerce Research and Applications, 2018(28): 102-113.

    [18] 翁律纲. 由交互行为引导的用户体验研究[D]. 无锡: 江南大学, 2009.

    Weng L G. User experience research which guided by the interactive activity[D]. Wuxi: Jiangnan University, 2009. (in Chinese)

    [19]

    Mahfouz A Y M. Interactive eshopping experience: An empirical investigation[D]. Texas A&M University, 2004.

    [20]

    Wu G H. The mediating role of perceived interactivity in the effect of actual interactivity on attitude toward the website[J]. Journal of Interactive Advertising, 2005, 5(2): 29-39. doi: 10.1080/15252019.2005.10722099

    [21] 郭国庆, 李光明. 购物网站交互性对消费者体验价值和满意度的影响[J]. 中国流通经济, 2012, 26(2): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLT201202021.htm

    Guo G Q, Li G M. The Influence of interactivity of online shopping on consumers' experiential value and satisfaction[J]. China Business and Market, 2012, 26 (2) : 112-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLT201202021.htm

    [22]

    Adelaar T, Chang S, Lancendorfer K M, et al. Effects of media formats on emotions and Impulse buying intent[J]. Journal of Information Technology, 2003, 18(4): 247-266. doi: 10.1080/0268396032000150799

    [23]

    Chen C C, Lin Y C. What drives live-stream usage intention? The perspectives of flow, entertainment, social interaction, and endorsement[J]. Telematics and informatics, 2018, 35(1): 293-303. doi: 10.1016/j.tele.2017.12.003

    [24] 杨孝杰. 消费体验对消费者满意度和忠诚度及再购买意愿的影响[J]. 经营与管理, 2013(2): 95-97. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGU201302040.htm

    Yang X J. The influence of consumer experience on consumer satisfaction and loyalty and repurchase intention[J]. Management, 2013(2) : 95-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGU201302040.htm

    [25] 姜佳奇. 网红经济下直播对消费者购买决策的影响因素分析[D]. 北京: 北京邮电大学, 2019.

    Jiang J Q. Analysis of the influencing factors of internet celebrity live broadcast on consumer purchasing decision[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese)

    [26]

    Pentina I, Amialchuk A, Taylor D G. Exploring effects of online shopping experiences on browser satisfaction and e-tail performance[J]. International Journal of Retail & Distribution Management, 2011, 39(10): 742-758.

    [27]

    Yoon S J. Antecedents and consequences of in-store experiences based on an experiential typology[J]. European Journal of Marketing, 2013, 47(5/6): 693-714. doi: 10.1108/03090561311306660

    [28] 孙小丽. 消费者网购体验、体验价值与购买意愿[J]. 商业经济研究, 2018(12): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJJ201812019.htm

    Sun X L. Consumers' online shopping experience, experience value and purchase intention[J]. Journal of Commercial Economics, 2018(12) : 60-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJJ201812019.htm

    [29]

    Singh J. Voice, exit, and negative word-of-mouth behaviors: An investigation across three service categories[J]. Journal of the Academy of Marketing Science, 1990, 18(1): 1-15. doi: 10.1007/BF02729758

    [30] 王建军, 王玲玉, 王蒙蒙. 网络口碑、感知价值与消费者购买意愿: 中介与调节作用检验[J]. 管理工程学报, 2019, 33(4): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGU201904009.htm

    Wang J J, Wang L Y, Wang M M. How eWOM and perceived value influence purchase intention: An investigation of mediation-moderation effects[J]. Journal of Industrial Engineering and Engineering Management, 2019, 33(4): 80-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGU201904009.htm

    [31]

    Bughin J, Doogan J, Vetvik O J. A new way to measure word-of-mouth marketing[J]. McKinsey Quarterly, 2010, 2(1): 113-116.

    [32]

    Fan Y, Ran Z. The effects of perceived luxury value on customer engagement and purchase intention in live streaming shopping[J]. Asia Pacific Journal of Marketing and Logistics, 2022, 34(6): 1 303-1 323. doi: 10.1108/APJML-08-2021-0564

    [33]

    Sweeney J C, Soutaer G N. Consumer perceived value: The development of a multiple item scale[J]. Journal of Retailing, 2001, 77(2): 203-220. doi: 10.1016/S0022-4359(01)00041-0

    [34]

    Gao Q, Pei-Luen P R, Salvendy G. Measuring perceived interactivity of mobile advertisements[J]. Behaviour & Information Technology, 2010, 29(1): 35-44.

    [35] 孙璐. 企业信息交互能力对价值共创及竞争优势的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Sun L. The effect of information interaction capabilities on value co-creation and competitive advantage of firms[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)

    [36]

    Zeithaml V A. Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence[J]. Journal of Marketing, 1988, 52(3): 2-22. doi: 10.1177/002224298805200302

    [37]

    Park H J, Lin L M. The effects of match-ups on the consumer attitudes toward internet celebrities and their live streaming contents in the context of product endorsement[J]. Journal of Retailing and Consumer Services, 2020, 52(C): 101 934-101 934

    [38]

    Zeithaml V A, Berry L L, Parasuraman A. The behavioral consequences of service quality[J]. Journal of Marketing, 1996, 60(2): 31-46. doi: 10.1177/002224299606000203

图(4)  /  表(8)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-05
  • 刊出日期:  2024-01-30

目录

    /

    返回文章
    返回