基于气体吸附和扫描电子显微镜分析天然和无机结合剂充填处理绿松石的孔隙特征

赵安迪, 陈全莉, 杨志祥

赵安迪, 陈全莉, 杨志祥. 基于气体吸附和扫描电子显微镜分析天然和无机结合剂充填处理绿松石的孔隙特征[J]. 宝石和宝石学杂志(中英文), 2024, 26(1): 12-21. DOI: 10.15964/j.cnki.027jgg.2024.01.002
引用本文: 赵安迪, 陈全莉, 杨志祥. 基于气体吸附和扫描电子显微镜分析天然和无机结合剂充填处理绿松石的孔隙特征[J]. 宝石和宝石学杂志(中英文), 2024, 26(1): 12-21. DOI: 10.15964/j.cnki.027jgg.2024.01.002
ZHAO Andi, CHEN Quanli, YANG Zhixiang. Pore Characteristic of Natural and Inorganic Binder Filled Turquoises Based on Gas Adsorption and Scanning Electron Microscope Analysis[J]. Journal of Gems & Gemmology, 2024, 26(1): 12-21. DOI: 10.15964/j.cnki.027jgg.2024.01.002
Citation: ZHAO Andi, CHEN Quanli, YANG Zhixiang. Pore Characteristic of Natural and Inorganic Binder Filled Turquoises Based on Gas Adsorption and Scanning Electron Microscope Analysis[J]. Journal of Gems & Gemmology, 2024, 26(1): 12-21. DOI: 10.15964/j.cnki.027jgg.2024.01.002

基于气体吸附和扫描电子显微镜分析天然和无机结合剂充填处理绿松石的孔隙特征

基金项目: 

苏门答腊汇聚板块边缘沉积输入和演化与地震活动关系:IODP362航次岩芯中的磁学记录基金项目 2019063146

中国地质大学(武汉)珠宝学院开放基金 CIGTXM-03-202302

云南省本科教育教学改革研究项目 JG2023143

详细信息
    作者简介:

    赵安迪(1997-),女,研究生,主要从事宝石学方向的研究。E-mail: 894241952@qq.com

    通讯作者:

    陈全莉(1982-),女,博士,教授,主要从事宝石学教学与研究工作。E-mail: chenquanli_0302@163.com

  • 中图分类号: TS93

Pore Characteristic of Natural and Inorganic Binder Filled Turquoises Based on Gas Adsorption and Scanning Electron Microscope Analysis

  • 摘要:

    绿松石为一种多孔的宝石材料,孔隙度可以直接影响其物理性质,如颜色、光泽、耐久性等,从而影响绿松石的品质,故孔隙度的研究工作至关重要。气体吸附法可以测得绿松石中的介孔(2~50 nm)以及不同孔径的孔隙的分布特征。采用Bet全自动气体吸附仪及扫描电子显微镜对无机充填处理前后绿松石样品的孔隙特征进行了对比。气体吸附测试结果显示,经过充填处理后绿松石的比表面积及孔容都有一定程度的变化,吸脱附曲线属于第Ⅲ类无滞后回线的曲线;平均孔径分布图显示各级孔隙在一定程度上减少,大的孔隙被无机充填物充填为小孔隙,但处理过程中也会出现较小孔径被腐蚀成大孔径的现象。扫描电子显微镜观察结果显示,处理前后绿松石的微晶集合体形貌、晶体特征以及孔隙度结构有较大的变化;结合计算,经无机结合剂充填处理后绿松石的表面孔隙率明显降低,其与处理前的天然绿松石中的孔隙是一端封闭且不贯穿的孔隙,符合吸脱附曲线表征的孔隙形状;微形貌特征的明显差异可以作为无机结合剂充填处理绿松石与天然绿松石的有效判别依据之一。

    Abstract:

    Turquoise is a porous gem material, and the porosity can directly affect its physical properties, such as colour, luster, durability, etc., thus affecting the quality of the turquoise. Therefore, the research works on the porosity of turquoise is crucial, and the gas adsorption method can measure the distribution characteristics of mesopores (2-50 nm) and pores of different pore sizes in turquoise. In this paper, the pore characteristics of inorganic binder filled turquoise before and after treatment were comparatively studied by using Bet automatic gas adsorption instrument and scanning electron microscope; the gas adsorption test showed that the specific surface area and pore volume of turquoise after filling treatment were changed to some extent, and the adsorption and desorption curves belonged to the curves of class Ⅲ without hysteresis return line; the average pore size distribution graph showed that the pores of all levels of turquoise after filling treatment were reduced to some extent. The average pore size distribution diagram showed that the pores of turquoise were reduced to some extent, and the large pores were filled into small pores by inorganic binder filling, and the phenomenon of smaller pores being eroded into large pores also occurs during the treatment process; the results of scanning electron microscope study showed that there were large changes in the microcrystalline aggregate morphology, crystal particle characteristics and porosity structure of turquoise before and after the treatment; combined with the calculation, the surface porosity of turquoise samples treated by inorganic filling was significantly reduced, and it was found that the pores in turquoise after treatment were closed at one end and do not penetrate, which were consistent with the pore shape characterized by the adsorption and desorption curves; the obvious difference in the microscopic morphology can be used as one of the bases to distinguish the inorganic binder filled turquoise from natural turquoise.

  • 图  1   天然绿松石(a)与无机充填处理绿松石(b)

    Figure  1.   Natural turquoise sample (a) and inorganic binder filled turquoise sample (b)

    图  2   处理前后绿松石样品的孔径分布图

    Figure  2.   Pore size distribution of the turquoise samples before and after treatment

    图  3   吸附等温线标准图(a)及滞后回线标准图(b)[16]

    Figure  3.   Standard diagram of adsorption isotherm (a) and hysteresis loop (b)

    图  4   天然及充填处理绿松石样品的吸附-脱附曲线

    Figure  4.   Adsorption-desorption curve of natural and filled turquoise samples

    图  5   充填处理绿松石样品的吸附-脱附曲线

    Figure  5.   Adsorption-desorption curve of filled turquoise sample

    图  6   处理前后绿松石样品的表面孔隙特征: (a-b)天然绿松石;(c-d)充填处理后绿松石

    Figure  6.   Surface pore characteristics of turquoise samples before and after treatment: (a-b) natural turquoise; (c-d) filled turquoise

    图  7   处理前、后绿松石样品的微形貌特征:(a-b, e)天然绿松石;(c-d, f)充填处理绿松石

    Figure  7.   Micromorphology characteristics of turquoise samples before and after treatment: (a-b, e) natural turquoise; (c-d, f) filled turquoise

    图  8   处理前后绿松石样品的微形貌特征及其EDS能谱:(a-b)处理后绿松石的微形貌特征; (c)图8b中11、12、15、16点位上的EDS能谱

    Figure  8.   Micromorphological characteristics of turquoise sampes before and after treatment and their EDS energy spectra: (a-b) micromorphological characteristics of the filled turquoise; (c) EDS energy spectra of points 11, 12, 15 and 16 in Figure 8b in order

    图  9   处理前后绿松石样品的表面孔隙率

    Figure  9.   Surface porosity of turquoise samples before and after treatment

    表  1   天然与无机充填处理绿松石样品的总孔隙特征对比

    Table  1   Comparison of total pore characteristics of natural and inorganic filled turquoise samples

    样品 BET Surface Area
    (m2/g)
    Pore Volume
    (cm3/g)
    天然绿松石 7.14 0.03
    无机充填绿松石 2.23 0.01
    下载: 导出CSV

    表  2   处理后绿松石样品的扫描电子显微镜EDS能谱分析结果

    Table  2   Results of scanning electron microscope with EDS energy spectroscopic analysis of the filled turquoise samples wB/%

    编号 C O Al P K Fe Cu
    1 4.45 49.07 16.69 22.14 0.42 2.06 2.16
    2 6.05 46.22 17.31 22.23 0.37 2.10 5.72
    3 5.70 44.69 16.71 23.88 0.43 2.17 6.43
    4 4.70 45.56 17.42 23.40 0.34 2.20 6.39
    5 4.60 43.83 16.64 25.13 0.57 2.51 6.71
    11 3.78 47.77 14.82 22.09 1.81 1.83 4.71
    12 4.54 49.64 12.45 23.14 2.16 1.76 3.98
    13 3.84 47.87 14.09 22.86 1.75 1.59 4.35
    平均值1 4.71 46.83 15.77 23.11 0.98 2.03 5.06
    6 6.98 35.03 16.48 30.52 2.34 3.18 5.47
    7 6.82 40.43 15.10 27.97 2.54 2.82 4.33
    8 9.11 35.29 14.74 30.32 2.72 2.96 3.80
    9 6.52 40.27 15.21 28.33 2.47 2.68 4.52
    10 5.86 44.26 14.46 26.16 2.75 2.44 4.06
    14 6.52 40.27 28.33 28.33 2.47 2.68 4.52
    15 5.86 44.26 14.46 26.16 2.75 2.44 4.06
    16 7.38 40.18 15.03 27.69 2.59 2.63 4.50
    平均值2 6.88 39.99 16.73 28.19 2.58 2.73 4.41
    注:平均值1为图 8中板状微晶1~5、11~13点位上的平均值;平均值2为图 8中胶状物6~10、14~116点位上的平均值
    下载: 导出CSV
  • [1] 唐宝山, 黄武, 李成香. 湖北省绿松石产业的现状、问题与建议[J]. 资源环境与工程, 2018, 32(3): 489-493. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201803036.htm

    Tang B S, Huang W, Li C X, The present situation, problems and suggestions of turquoise industry in Hubei Province[J]. Resources, Environment and Engineering, 2018, 32(3): 489-493. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201803036.htm

    [2] 戴洁, 陈秀英. 浅析绿松石的充填处理及品质评价[J]. 经贸实践, 2017(20): 294. https://www.cnki.com.cn/Article/CJFDTOTAL-JMSA201720243.htm

    Dai J, Chen X Y. Analysis of turquoise filling treatment and quality evaluation[J]. Economic and Trade Practice, 2017(20): 294. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JMSA201720243.htm

    [3]

    Liu L, Yang M X, Li Y, et al. Technical evolution and identification of resin-filled turquoise[J]. Gems & Gemmology, 2021, 57(1): 22-35.

    [4] 胡静梅, 王旭, 邓谦. 浸油绿松石的研究[C]//中国国际珠宝首饰学术交流会论文集(2019). 北京: 中国宝石, 2019.

    Hu J M, Wang X, Deng Q. Study on oil impregnated turquoise[C]// China International Jewelry Academic Exchange(2019). Bejing: China Gems, 2019. (in Chinese)

    [5] 李友华, 章安玉, 杨照. 绿松石加胶改色的研究[J]. 珠宝科技, 1994(1): 28-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBKJ401.017.htm

    Li Y H, Zhang A Y, Yang Z. Study on color modification of turquoise[J]. Jewelry Technology, 1994(1): 28-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBKJ401.017.htm

    [6] 许雅婷, 杨明星. 安徽绿松石充填材料及处理特征初探[J]. 宝石和宝石学杂志(中英文), 2019, 21(1): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201901005.htm

    Xu Y T, Yang M Y. Preliminary study on the characteristics of turquoise filling materials and treatment in Anhui Province[J]. Journal of Gems & Gemmology, 2019, 21(1): 20-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201901005.htm

    [7] 徐丰舜, 陈全莉, 丁薇, 等. 天然及有机充填处理绿松石的荧光光谱研究[J]. 光谱学与光谱分析, 2021, 41(9): 2 918-2 923. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202109050.htm

    Xu F S, Chen Q L, Ding W, et al. Fluorescence spectroscopy of natural and organically filled treated turquoise[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2 918-2 923. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202109050.htm

    [8] 曾璇, 杨志军, 李晓潇, 等. 湖北竹山天然绿松石及其仿制品的振动光谱研究[J]. 光谱学与光谱分析, 2019, 39(3): 834-839. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201903031.htm

    Zeng X, Yang Z J, Li X X, et al. Vibrational spectroscopic study of natural turquoise and its imitations from Zhushan, Hubei[J]. Spectroscopy and Spectral Analysis, 2019, 39(3): 834-839. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201903031.htm

    [9] 张胜男, 余晓艳. 绿松石的红外光谱特征研究[C]//珠宝与科技—中国国际珠宝首饰学术交流会论文集(2011). 北京: 地质出版社, 2011.

    Zhng S N, Yu X Y. Infrared spectral characterization of turquoise[C]//Jewelry and Technology: China International Jewelry Academic Exchange(2011). Bejing: Geology Press, 2011. (in Chinese)

    [10] 邓谦, 胡静梅, 王旭, 等. 一种"加瓷"处理绿松石的鉴定研究[C]//珠宝与科技—中国国际珠宝首饰学术交流会(2019). 北京: 中国宝石, 2019.

    Deng Q, Hu J M, Wang X, et al. Identification of a kind of "porcelain added" turquoise[C]//Jewelry and Technology: China International Jewelry Academic Exchange(2019). Bejing: China Gems, 2019. (in Chinese)

    [11] 黄莉莹, 陈全莉, 高欣欣, 等. "加瓷"处理绿松石的成分及谱学特征研究[J]. 光谱学与光谱分析, 2021, 41(7): 2 245-2 250. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202107048.htm

    Huang L Y, Chen Q L, Gao X X, et al. Study on the composition and spectral characteristics of turquoise treated with "Jiaci"[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2 245-2 250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202107048.htm

    [12] 杨峰, 宁正福, 孔德涛, 等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3): 450-455. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201303002.htm

    YangF, Ning Z F, Kong D T, et al. Analysis of shale pore structure by high-pressure mercury intrusion method and nitrogen adsorption method[J]. Natural Gas Geosciences, 2013, 24(3): 450-455. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201303002.htm

    [13]

    Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)[J]. Pure and Applied Chemistry, 2015, 87(9-10): 1 051-1 069. doi: 10.1515/pac-2014-1117

    [14] 全国有色金属标准化技术委员会. GB/T 19587-2004气体吸附BET法测定固体物质比表面积[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2004.

    TC243/SC4. GB/T 19587-2004 Determination of the specific surface area of solids by gas adsorption using the BET method[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardiazation Administration, 2004. (in Chinese)

    [15] 陈德飞. 气体吸附对煤岩渗流及力学性质的影响[D]. 成都: 西南石油大学, 2014.

    Chen D F. Influence of gas adsorption on seepage and mechanical properties of coal and rock[D]. Chengdu: Southwest Petroleum University, 2014. (in Chinese)

    [16] 李克. 安徽马鞍山绿松石电化学处理前后孔隙特征研究[D]. 北京: 中国地质大学, 2017.

    Li K. Study on pore characteristics of the Maanshan turquoise before and after electrochemical treatment[D]. Beijing: China University of Geosciences, 2017. (in Chinese)

    [17] 吕海波, 薛小杰, 蒋熠, 等. 基于压汞试验及氮气吸附试验下柳州红黏土微观结构分析[J]. 科学技术与工程, 2020, 20(35): 14 619-14 624. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202035040.htm

    Lyu H B. Xue X J, Jiang Y, et al. Microstructure analysis of Liuzhou red clay based on mercury intrusion test and nitrogen adsorption test[J]. Science, Technology and Engineering, 2020, 20(35): 14 619-14 624. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202035040.htm

    [18] 陆太进, 戴慧, 田庚凡, 等. 基于气体吸附法和X射线Micro-CT三维成像技术定量解析天然和电化学处理绿松石孔隙特征[J]. 地学前缘, 2020, 27(5): 247-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202005028.htm

    LuT J, Dai H, Tian G F, et al. Quantitative analysis of pore characteristics of natural and electrochemical treated turquoise based on gas adsorption method and X-ray micro CT three-dimensional imaging technology[J]. The Frontier of Geosciences, 2020, 27(5): 247-253. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202005028.htm

    [19] 刘玲. 中国绿松石颜色的成因、影响因素及分级研究[D]. 武汉: 中国地质大学, 2018.

    LiuL. Study on the origin, influencing factors and classification of turquoise color in china[D]. Wuhan: China University of Geosciences, 2018. (in Chinese)

图(9)  /  表(2)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  40
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 刊出日期:  2024-01-30

目录

    /

    返回文章
    返回