缅甸“变色龙”琥珀特殊颜色现象成因初探

胡贺文, 李妍

胡贺文, 李妍. 缅甸“变色龙”琥珀特殊颜色现象成因初探[J]. 宝石和宝石学杂志(中英文), 2023, 25(4): 99-110. DOI: 10.15964/j.cnki.027jgg.2023.04.009
引用本文: 胡贺文, 李妍. 缅甸“变色龙”琥珀特殊颜色现象成因初探[J]. 宝石和宝石学杂志(中英文), 2023, 25(4): 99-110. DOI: 10.15964/j.cnki.027jgg.2023.04.009
HU Hewen, LI Yan. The Cause of the Special Colour Phenomenon of "Chameleon" Amber from Myanmar[J]. Journal of Gems & Gemmology, 2023, 25(4): 99-110. DOI: 10.15964/j.cnki.027jgg.2023.04.009
Citation: HU Hewen, LI Yan. The Cause of the Special Colour Phenomenon of "Chameleon" Amber from Myanmar[J]. Journal of Gems & Gemmology, 2023, 25(4): 99-110. DOI: 10.15964/j.cnki.027jgg.2023.04.009

缅甸“变色龙”琥珀特殊颜色现象成因初探

基金项目: 

湖北省哲学社会科学计划项目 21G007

珠宝检测技术创新中心项目 CIGTXM-03-202304

中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目 CUGDCJJ202221

详细信息
    作者简介:

    胡贺文(2000-),女,本科,主要从事琥珀宝石学研究。E-mail: hewen_cug@126.com

    通讯作者:

    李妍(1987-),女,特任教授,主要从事琥珀宝石学、琥珀文化研究。E-mail: yanli@cug.edu.cn

  • 中图分类号: TS93

The Cause of the Special Colour Phenomenon of "Chameleon" Amber from Myanmar

  • 摘要: “变色龙”琥珀是缅甸琥珀的特殊品种,具有独特的颜色现象,在黑色背景、白色光源照射下,其表面会呈现出以绿色调为主的颜色,如一层覆于其上的“绿膜”,关于这一颜色现象的成因尚缺乏深入研究。本文通过分析光谱学特征、运用色度学的方法模拟体色和荧光色对“变色龙”琥珀展开研究,探索了“变色龙”琥珀特殊颜色现象的成因,得到了以下主要结论:(1)缅甸“变色龙”琥珀具有乌桑巴拉效应(Usambara effect),随着琥珀厚度的增加,其色调角逐渐减小,体色由黄色逐渐变红色,饱和度则是先增大后减小,说明在一定的厚度范围内,体色会随着厚度的增加变得更加鲜艳,厚度超过一定值(约11 mm)后,体色的饱和度会快速下降,使颜色变灰暗;(2)表面“绿膜”的成因与465 nm处发光中心的特点密切相关,缅甸“变色龙”465 nm处的发光中心强度高、独立性好,因此能观察到明显的“绿膜”现象,人眼观察到的颜色大多数情况下是荧光色叠加与体色共同作用的效果,“变色龙”琥珀的乌桑巴拉效应会对“绿膜”的呈现产生影响;(3)光源的相对光谱功率分布会影响琥珀的荧光颜色,在D65光源下430 nm激发的蓝绿色荧光强度比382 nm激发的蓝色荧光强度高,荧光颜色以蓝绿色为主,且D65光源在长波长区域的辐射强度比短波长高,有利于荧光颜色偏向绿色调;(4)市场常用的日光即实验室模拟D65光源,在此光源照明下可以观察到“变色龙”琥珀表面“绿膜”现象。因此,在研究宝玉石颜色成因时应同时考虑光源、环境和样品自身性质对色彩呈现效果的影响,综合分析得出结论。
    Abstract: "Chameleon" amber is a special variety of amber from Myanmar, which has an unique optical effect. When the "chameleon" amber is observed under the white light in black background, its surface will show floating green colour. There is still no systematical research about the cause of this phenomenon. In this paper, the spectral characteristics and colourimetry were used to investigate "chameleon" amber and the cause of the special colour phenomenon. The following main conclusions are obtained: (1) "Chameleon" amber from Myanmar has Usambara effect. With the increase of thickness, its hue angle decreases, the body colour changes from yellow to red, and the saturation increases at first and then decreases. It shows that the body colour will become brighter with the increase of thickness in a certain range. If the thickness reaches a certain value (about 11 mm), the saturation will decrease rapidly and make the colour darker. (2) The floating green colour on "chameleon" amber's surface is closely related to the characteristics of the fluorescence center at 465 nm. It is the high intensity and great independence of the 465 nm fluorescence center that make the obvious floating green. In most cases, the optical phenomenon observed by human eyes is the combined effect of fluorescent colour and body colour. The Usambara effect of "chameleon" amber will have an impact on the presentation of the amber colour. (3) The relative spectral power distribution of the light source will affect the fluorescence colour of "chameleon" amber. Under D65 light source, the intensity of bluish green fluorescence excited by 430 nm is higher than blue fluorescence excited by 382 nm, so the fluorescence colour is mainly bluish green. And the radiation intensity of D65 light source in the long wavelength region is higher than that of short wavelength, which is beneficial for fluorescence colour to lean towards green tone. (4) The sunlight commonly used in the market is the laboratory simulated D65 light source, under which the phenomenon of floating green colour can be observed. When studying the cause of the colour of gems, we should consider the influence of the light source, the environment and the nature of the sample on the colour presentation effect at the same time, and draw a conclusion by comprehensive analysis.
  • 图  1   “变色龙”琥珀在日光黑色背景下表面的“绿膜”

    Figure  1.   Floating green colour on the surface of "Chameleon" amber observed under sunlight in black background

    图  2   在不同背景和光源下的楔形斜面琥珀样品和碎料琥珀样品:(a, b)白色背景白色光源下;(c, d)黑色背景长波紫外光下;(e, f)黑色背景白色光源下

    Figure  2.   Wedge-shaped amber sample and scrap amber sample under different backgrounds and light sources: (a, b)white background and white light source; (c, d)black background and long wavelength ultraviolet light; (e, f)black background and white light source

    图  3   “变色龙”琥珀样品的红外吸收光谱

    Figure  3.   Infrared absorption spectra of "chameleon" amber samples

    图  4   “变色龙”琥珀斜面样品XM-2-XM-7不同厚度处的紫外-可见光光谱

    Figure  4.   UV-Vis spectra of the bevel at different thickness of "chameleon" amber samples XM-2 to XM-7

    图  5   “变色龙”琥珀样品较薄处(厚度2~5 mm区域)三维荧光光谱

    Figure  5.   3D fluorescence spectra of "chameleon" amber sample in thinner region (thickness 2-5 mm)

    图  6   “变色龙”琥珀样品较厚处(厚度9~13 mm区域)三维荧光光谱

    Figure  6.   3D fluorescence spectra of "chameleon" amber sample in thicker region (thickness 9-13 mm)

    图  7   “变色龙”琥珀样品XM-Thin和XM-Thick的荧光发射光谱:(a)激发波长382 nm;(b)激发波长404 nm;(c)激发波长430 nm

    Figure  7.   Fluorescence emission spectra of "chamelon" amber samples XM-Thin and XM-Thick : (a)excitation wavelength at 382 nm; (b)excitation wavelength at 404 nm; (c)excitation wavelength at 430 nm

    图  8   “变色龙”琥珀不同方向切面的“绿膜”

    Figure  8.   The floating bluish green colour showed on "chameleon" amber in different cutting directions

    图  9   430 nm(a)和382 nm(b) 激发下荧光颜色在色品图中的坐标位置以及体色和荧光色的模拟结果(c)

    Figure  9.   Coordinate position of fluorescence colour in chromaticity diagram excited by 430 nm (a) and 382 nm(b) and simulation results of body colour and fluorescent colour(c)

    图  10   体色与382 nm(a)和430 nm(b)激发荧光色共同作用的效果模拟

    Figure  10.   Simulation of the interaction between body colour and fluorescent colour excited by 382 nm (a) and 430 nm(b)

    图  11   仪器光源(Xe灯)和D65光源的相对光谱功率分布

    Figure  11.   Relative spectral power distribution of instrumental light source (Xe lamp) and D65 light source

    表  1   由光谱转化而来的颜色数据

    Table  1   Colour data transformed from the spectra

    点位编号 体色颜色数据
    XYZ L*a*b* sRGB
    X Y Z L* a* b* R G B
    XM-2 49.39 45.51 5.23 73.23 17.40 81.12 240.44 165.18 0
    XM-3 41.19 35.84 3.02 66.39 23.24 81.51 227.10 142.90 0
    XM-4 38.58 31.68 1.92 63.07 29.37 84.30 225.10 129.42 0
    XM-5 33.53 26.06 1.10 58.10 33.91 84.53 215.12 112.76 0
    XM-6 28.09 16.69 0.39 51.48 42.18 83.19 204.29 87.85 0
    XM-7 18.67 11.45 0.01 40.34 47.85 69.40 175.06 51.63 0
    激发波长 荧光颜色数据
    XYZ L*a*b* sRGB
    X Y Z L* a* b* R G B
    382 nm 13.43 9.05 64.37 36.08 35.94 -78.06 0 73.00 214.00
    430 nm 7.19 12.43 30.27 41.89 -38.07 -30.72 0 116.00 149.00
    下载: 导出CSV

    表  2   样品不同厚度处体色的色调角和饱和度

    Table  2   Hue angle and chroma of the sample with different thickness

    点位编号 色调角/° 饱和度
    XM-2 77.9 82.97
    XM-3 74.1 84.76
    XM-4 70.8 89.27
    XM-5 68.1 91.08
    XM-6 63.1 93.27
    XM-7 55.4 84.30
    下载: 导出CSV

    表  3   样品可见光区色光透过率的平均值

    Table  3   Average transmittance of visible region of the sample

    点位编号 可见光区色光透过率的平均值/%
    XM-2 43
    XM-3 36
    XM-4 34
    XM-5 30
    XM-6 26
    XM-7 19
    下载: 导出CSV
  • [1] 云南省珠宝玉石质量监督检验研究院, 腾冲市文化产业办公室, 腾冲市琥珀协会, 等. DB 53/T 872-2018云南省地方标准: 缅甸琥珀[S]. 昆明: 云南省质量技术监督局, 2018.

    Yunnan Research Institute of Gem & Jade Quality Supervision and Inspection, Tengchong Culture and Industry Office, Tengchong Amber Association, et al. DB 53/T 872-2018 Yunnan local standard: Burmese amber[S]. Kunming: Yunnan Provincial Bureau of Quality and Technical Supervision, 2018. (in Chinese)

    [2] 帅长春, 尹作为, 薛秦芳, 等. 缅甸琥珀"留光"效应和变色效应的谱学特征[J]. 光谱学与光谱分析, 2020, 40(4): 1 174-1 178. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202004036.htm

    Shuai C C, Yin Z W, Xue Q F, et al. The spectrum characteristic research of colour change effect and "light earry effect" amber from Burma[J]. Spectroscopy and Spectral Analysis, 2020, 40(4): 1 174-1 178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202004036.htm

    [3]

    Jiang X R, Zhang Z Q, Wang Y M, et al. Gemmological and spectroscopic characteristics of different varieties of amber from the Hukawng valley, Myanmar[J]. The Journal of Gemmology, 2020, 37(2): 144-162. doi: 10.15506/JoG.2020.37.2.144

    [4] 谢浩, 裴景成, 李立平. 拉长石晕彩与内部结构的关系[J]. 地质科技情报, 2006, 25(2): 35-40. doi: 10.3969/j.issn.1000-7849.2006.02.006

    Xie H, Pei J C, Li L P. Relation between labradorescence and internal structure of labradorite[J]. Bulletin of Geological Science and Technology, 2006, 25(2): 35-40. (in Chinese) doi: 10.3969/j.issn.1000-7849.2006.02.006

    [5] 彭艳菊, 何雪梅, 方勤方. 宝石晕彩效应的成因机理综述[J]. 宝石和宝石学杂志(中英文), 2008, 37(1): 15-19. doi: 10.3969/j.issn.1008-214X.2008.01.004

    Peng Y J, He X M, Fang Q F. Review on origin of iridescence in gems[J]. Journal of Gems & Gemmology, 2008, 37(1): 15-19. (in Chinese) doi: 10.3969/j.issn.1008-214X.2008.01.004

    [6] 彭艳菊, 何雪梅, 方勤方. 拉长石晕彩成因的电子探针研究[J]. 岩石矿物学杂志, 2007, 26(5): 474-480. doi: 10.3969/j.issn.1000-6524.2007.05.012

    Peng Y J, He X M, Fang Q F. EPMA studies of iridescence of labradorite[J]. Acta Petrologica et Mineralogica, 2007, 26(5): 474-480. (in Chinese) doi: 10.3969/j.issn.1000-6524.2007.05.012

    [7] 彭艳菊, 何雪梅. 拉长石晕彩成因的研究现状及最新进展[C]//中国矿物岩石地球化学学会. 中国矿物岩石地球化学学会第11届学术年会论文集. 贵阳: 矿物岩石地球化学通报, 2007: 213-214.

    Peng Y J, He X M. Research status and latest progress of iridescence of labradorite[C]//Chinese Society of Minerals and Rocks Geochemistry. Proceedings of the 11th Annual meeting of the Chinese Society of Mineral and Rock Geochemistry. Guiyang: Bulletin of Mineralogy, Petrology and Geochemistry, 2007 : 213-214. (in Chinese)

    [8]

    Lu T, Liu Y, Shigley J, et al. Characterization of a notable historic gem diamond showing the Alexandrite effect[J]. Journal of Crystal Growth, 1998, 193(4): 577-584. doi: 10.1016/S0022-0248(98)00446-1

    [9]

    Bellani V, Giulotto E, Linati L, et al. Origin of the blue fluorescence in Dominican amber[J]. Journal of Applied Physics, 2004, 97(1): 16 101.

    [10] 张志清. 基于光谱学特征的琥珀产地溯源应用及其荧光物质研究[D]. 武汉: 中国地质大学, 2021.

    Zhang Z Q. Spectral characteristics of amber-their application in provenance determination, and study on fluorescent components[D]. Wuhan: China University of Geosciences, 2021. (in Chinese)

    [11]

    Liu Y, Shi G H, Wang S. Colour phenomena of blue amber[J]. Gems & Gemology, 2014, 50(2): 134-140. doi: 10.3969/j.issn.1002-1442.2014.02.022

    [12]

    Xin C X, Li Y, Wang Y M, et al. Characterisation of patchy blue and green colouration in Dominican blue amber[J]. The Journal of Gemmology, 2021, 37(7): 702-715. doi: 10.15506/JoG.2021.37.7.702

    [13] 王妍, 施光海, 师伟, 等. 三大产地(波罗的海、多米尼加和缅甸)琥珀红外光谱鉴别特征[J]. 光谱学与光谱分析, 2015, 35(8): 2 164-2 169. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201508022.htm

    Wang Y, Shi G H, Shi W, et al. Infrared spectral characteristics of ambers from three main sources (Baltic, Dominica and Myanmar)[J]. Spectroscopy and Spectral Analysis, 2015, 35(8): 2 164-2 169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201508022.htm

    [14] 张超, 齐丽曼, 王楠, 等. 不同产地琥珀红外光谱特征峰的研究[J]. 品牌与标准化, 2017, 345(10): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-QYBZ201710061.htm

    Zhang C, Qi L M, Wang N, et al. Study on infrared spectral characteristic peaks of amber from different areas[J]. Brand & Standardization, 2017, 345(10): 77-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QYBZ201710061.htm

    [15] 张超, 宋晓光, 王楠, 等. 抚顺琥珀、吉林琥珀、缅甸琥珀产地鉴定的探究[J]. 品牌与标准化, 2020, 365(6): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QYBZ202006024.htm

    Zhang C, Song X G, Wang N, et al. Study on origin identification of Fushun amber, Jilin amber and Myanmer amber[J]. Brand & Standardization, 2020, 365(6): 72-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QYBZ202006024.htm

    [16]

    Shi Z T, Xin C X, Wang Y M. Spectral characteristics of unique species of Burmese amber[J]. Minerals, 2023, 13(2): 151-151.

    [17] 张晓凤, 柏俊杰, 曹坤, 等. 现代仪器分析实验[M]. 重庆: 重庆大学出版社, 2021: 40.

    Zhang X F, Bai J J, Cao K, et al. Modern instrumental analysis experiment[M]. Chongqing: Chongqing University Press, 2021: 40. (in Chinese)

    [18] 常香玲. 有机化合物的颜色与共轭π→π*跃迁[J]. 南都学坛, 2001(6): 47-48. https://www.cnki.com.cn/Article/CJFDTOTAL-LDXT200106018.htm

    Chang X L. The colour and conjugation π→π* transition of organic compound[J]. Academic Forum of Nandu, 2001(6): 47-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDXT200106018.htm

    [19] 孙曜昉, 魏广斌. 有机化合物的生色问题[J]. 徐州师范学院学报(自然科学版), 1990, 8(2): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XZSX199002007.htm

    Sun Y F, Wei G B. Chromogenic problem of ornagic compounds[J]. Journal of Xuzhou Normal University(Natural Science Edition), 1990, 8(2): 43-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XZSX199002007.htm

    [20] 唐正霞. 材料研究方法[M]. 西安: 西安电子科技大学出版社, 2018: 25.

    Tang Z X. Material research methods[M]. Xi'an: Xi'an University of Electronic Science and Technology Press, 2018: 25. (in Chinese)

    [21] 胡威捷, 汤顺青, 朱正芳. 现代颜色技术原理及应用[M]. 北京: 北京理工大学出版社, 2007: 42.

    Hu W J, Tang S Q, Zhu Z F. Modern colour science and application[M]. Beijing: Beijing Institute of Technology Press, 2007: 42. (in Chinese)

    [22] 王雅玫, 蒋欣然, 张志清. 《蓝珀分级》团体标准的关键技术及其解读[J]. 宝石和宝石学杂志(中英文), 2019, 21(6): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201906001.htm

    Wang Y M, Jiang X R, Zhang Z Q. Key technology and interpretation of the association standard: Blue amber grading[J]. Journal of Gems & Gemmology, 2019, 21(6): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201906001.htm

    [23]

    Zhang Z Q, Jiang X R, Wang Y M, et al. Fluorescence characteristics of blue amber from the Dominican Republic, Mexico, and Myanmar[J]. Gems & Gemology, 2020, 56(4): 484-496.

图(11)  /  表(3)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  125
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-08
  • 刊出日期:  2023-07-30

目录

    /

    返回文章
    返回