缅甸“有点咸”根珀与波罗的海蜜蜡的显微特征对比及意义

施光海, 代荔莉, 王妍, 梁欢, 邢碧倩

施光海, 代荔莉, 王妍, 梁欢, 邢碧倩. 缅甸“有点咸”根珀与波罗的海蜜蜡的显微特征对比及意义[J]. 宝石和宝石学杂志(中英文), 2023, 25(4): 42-49. DOI: 10.15964/j.cnki.027jgg.2023.04.004
引用本文: 施光海, 代荔莉, 王妍, 梁欢, 邢碧倩. 缅甸“有点咸”根珀与波罗的海蜜蜡的显微特征对比及意义[J]. 宝石和宝石学杂志(中英文), 2023, 25(4): 42-49. DOI: 10.15964/j.cnki.027jgg.2023.04.004
SHI Guanghai, DAI Lili, WANG Yan, LIANG Huan, XING Biqian. Micro-Characteristic of "Briny" Root-Amber from Myanmar versus Beeswax-Amber from the Baltic Sea and Their Significance[J]. Journal of Gems & Gemmology, 2023, 25(4): 42-49. DOI: 10.15964/j.cnki.027jgg.2023.04.004
Citation: SHI Guanghai, DAI Lili, WANG Yan, LIANG Huan, XING Biqian. Micro-Characteristic of "Briny" Root-Amber from Myanmar versus Beeswax-Amber from the Baltic Sea and Their Significance[J]. Journal of Gems & Gemmology, 2023, 25(4): 42-49. DOI: 10.15964/j.cnki.027jgg.2023.04.004

缅甸“有点咸”根珀与波罗的海蜜蜡的显微特征对比及意义

基金项目: 

国家自然基金项目 42273044

国家自然基金项目 41688103

详细信息
    作者简介:

    施光海(1968-),男,教授,主要从事宝玉石矿床和资源的研究及教学工作。E-mail: shigh@cugb.edu.cn

  • 中图分类号: TS933.23

Micro-Characteristic of "Briny" Root-Amber from Myanmar versus Beeswax-Amber from the Baltic Sea and Their Significance

  • 摘要: 缅甸“根珀”是缅甸琥珀众多品种中的一类,其珀质油润、半透明-不透明,纹理多样,虽类似树根,但大多数没有树纹或者树木年轮的规律样式,故其样式及身世常给人们以神秘之感。通过扫描电子显微镜分析初步发现缅甸根珀内部近表面存在圆球形气孔,其直径变化在0.1~1.5 μm之间,气孔所占体积百分数约为6% vol.。几乎在每个气孔内部,都发现含有一个立方体状NaCl晶体。上述特征说明形成琥珀的树脂可能曾经处于一个确定的高气温、高盐度环境,为其所处潟湖环境提供了重要依据。缅甸根珀的内部气泡特征与波罗的海蜜蜡的内部气泡特征有一定的相似性,但其透明度明显逊于后者。波罗的海白色蜜蜡中的气泡直径为0.1~0.3 μm(气孔占7% vol.),尺寸远小于细小微粒直径1.0 μm。微粒直径1.0 μm对应于12 500目,这个粒径级别的粉尘,若为透明矿物,其颜色表现为白色。借助透明矿物条痕色基本为白色的原理,我们认为白色蜜蜡的颜色是由直径极小(100~300 nm)〖JP2〗的密集气泡所呈现的白色,并非真实琥珀物质颜色,并将此确定为白色蜜蜡现象。缅甸根珀的呈色机理与波罗的海白色蜜蜡区域有一定可比拟性,其更低的透明度可能归因于内部还包含岩盐晶体。白色蜜蜡中直径细小且密集(气孔占约7% vol.)的气泡特征,很好地解释了在摩擦时,白珀更容易散发琥珀气味的现象,因为在摩擦时,这些细密的气泡很容易爆破并释放其中气味。黄色蜜蜡中气泡直径较大(5.0~10.0 μm),且气孔占体积百分数(约1% vol.)较低,进一步验证了气泡对透明度产生了明显影响的认识,但对其体色并未产生明显影响。综合以上特征,或许将缅甸“根珀”更名为“根蜜蜡”更为合适。
    Abstract: Root-amber is one of the many varieties of amber from Myanmar, which is translucent to opaque with greasy lustre. Although the varied textures resemble tree roots, most amber lack of the regular tree patterns or annual rings. Thus, its pattern and origin often leave people with a sense of mystery. Preliminary analysis by scanning electron microscope revealed the presence of rounded spherical bubbles on the internal surface of root-amber from Myanmar, which varied in diameter from 0.1 μm to 1.5 μm, and the percentage of volume occupied by the bubbles was about 6% vol. A cubic halite crystal was found in almost every bubble inside. Features above suggest that the sap that formed the amber was once in a high temperature, high salinity environment, providing an important basis for the lagoon environment in which it was preserved. Such characteristics of bubbles in Myanmar root-amber share some similarities with Baltic beeswax-amber in terms of internal characteristics, but its transparency is significantly inferior to that of the latter. The diameter of the bubbles in Baltic white beeswax-amber ranges from 0.1 μm to 0.3 μm (pores account for 7% vol.), which is much smaller than the fine particles of 1.0 μm in diameter. One micron corresponds to 12 500 mesh, which reaches the particle size level of dust that presents white colour if the mineral is transparent. According to the principle that transparent mineral streaks are basically white, we believe that the white colour of the white beeswax amber is presented by the dense air bubbles of very small diameter (100-300 nm), not the real amber substance colour, and identify this as the white beeswax-amber phenomenon. The mechanism of coloration of root-amber from Myanmar is partially comparable to that of white beeswax-amber from Baltic, and its lower transparency may be attributed to the NaCl crystals that also contained inside. The discovery of small and dense (about 7% vol.) bubbles in white beeswax-amber also explains why white beeswax-amber is more readily able to release its rosin odor when it is rubbed, as these fine bubbles burst easily and release their odor when rubbed. The larger diameter (5.0-10.0 μm) and lower density of bubbles (about 1% vol.) in yellow beeswax-amber suggest that the bubbles only have a significant effect on its transparency and not on its body colour. Combining the above characteristics, it is suggested that it is probably more appropriate to change the name of Myanmar "root-amber" to "root beeswax-amber".
  • 致谢: 根珀照片由陈作江先生提供;样品测试过程中得到了中国科学院地质与地球物理研究所电子探针与电镜实验室杨赛红老师的帮助;在论文修改过程中,匿名审稿人提出的建设性修改意见和建议帮助我们提高了本文质量,在此一并感谢!
  • 图  1   随形抛光的缅甸根珀(正面a及背面b),尺寸62 ×86 × 23 mm,质量66.11克以及缅甸根珀(正面c及背面d),尺寸138 × 82 × 14 mm,质量73.68克

    Figure  1.   Pendant made of root-amber from Myanmar, size 62 × 86 ×23 mm, 66.11 g, front(a) and back(b); and another root-amber from Myanmar, size 138 × 82× 14 mm, 73.68 g, front(c) and back(d)

    图  2   缅甸琥珀样品中有根珀(不透明黄白色部分)与棕珀(透明棕红色部分)的正面与背面(a),波罗的海均匀黄色蜜蜡(b)和含琥珀的白色-黄白色不均匀蜜蜡的正面与背面(c)

    Figure  2.   Amber sample from Myanmar with root-amber (white opaque part) and brown amber (transparent part) (a), and yellow even beeswax-amber (b) and white to light yellowish white uneven beeswax-amber (c) from the Baltic Sea

    图  3   缅甸根珀表面的气孔(a),气孔内部的立方体晶体(b)以及晶体的能谱显示为岩盐(NaCl)(c)

    Figure  3.   Bubbles on the surface of root-amber from Myanmar (a), cubic crystals inside the bubbles (b), and energy spectrum of the minerals show that they are halite (NaCl) crystals (c)

    图  4   波罗的海琥珀表面的气孔: (a, b)样品BA-02;(c, d)样品BA-03

    Figure  4.   Exposed bubbles on the surface of amber from the Baltic Sea: (a, b) sample BA-02; (c, d) sample BA-03

    图  5   波罗的海白色蜜蜡(a)、浅黄白色蜜蜡(b)、被金色琥珀包裹的浅黄白色蜜蜡(c)和各种不同颜色的(蜜蜡及)琥珀饰料(d)

    Figure  5.   White beeswax-amber (a), light yellowish white beeswax-amber (b), light yellowish white beeswax-amber wrapped by transparent golden amber (c) and (beeswax-) amber for decoration of various colours and transparency from the Baltic Sea (d)

    表  1   产自缅甸和波罗的海的琥珀样品特征

    Table  1   Characteristics of amber samples from Myanmar and the Baltic Sea

    样品号 产地 颜色 描述 相对密度* 紫外荧光
    MA-4 缅甸 根珀白色,琥珀棕-深棕色 板状,部分不透明,棕珀透明 1.04 长波:不均匀强蓝色,条带状,白色部分弱;短波:弱蓝紫色
    BA-02 波罗的海 黄色 半圆珠,半透明,断口贝壳状 1.07 长波:中等黄绿色;短波:弱淡黄色
    BA-03 波罗的海 蜜蜡白色-黄白色,琥珀棕黄色,背面有白皮 块状,具有流纹构造,半透明 1.03 长波:弱黄绿色,白色部分强于黄色部分;短波:惰性
    注:*相对密度采用静水力学法测量,计算结果为单块体相对密度的多次平均值,即不代表其中根珀、蜡的值
    下载: 导出CSV
  • [1] 施光海, 代荔莉. 情厚重斟琥珀杯: 琥珀的前世今生[J]. 紫禁城, 2020(5): 14-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIJC202005005.htm

    Shi G H, Dai L L. The amber cup holds a human bond: The origin and development of amber[J]. Forbidden City, 2020(5): 14-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZIJC202005005.htm

    [2] 王雅玫, 李妍, 石兆彤, 等. 琥珀的宝石学研究综述[J]. 宝石和宝石学杂志(中英文), 2022, 24(5): 55-68. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202205005.htm

    Wang Y M, Li Y, Shi Z T, et al. A review for the gemmological research on amber[J]. Journal of Gems & Gemmology, 2022, 24(5): 55-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202205005.htm

    [3] 代荔莉, 施光海, 袁野, 等. 多条件下波罗的海琥珀热优化对谱学特征的影响[J]. 光谱学与光谱分析, 2021, 41(4): 1 300-1 305. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202104058.htm

    Dai L L, Shi G H, Yuan Y, et al. Influences on Baltic amber spectral characteristics under thermal optimization with multiple conditions[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1 300-1 305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202104058.htm

    [4] 廖望春, 范星宇, 施光海, 等. 红外光谱技术探究Ⅰ类琥珀形成的化学过程[J]. 光谱学与光谱分析, 2020, 40(10): 3 167-3 173. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202010036.htm

    Liao W C, Fan X Y, Shi G H, et al. Study on chemical process of amber formation by infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(10): 3 167-3 173. (In Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202010036.htm

    [5] 王妍, 施光海, 师伟, 等. 三大产地(波罗的海、多米尼加和缅甸)琥珀红外光谱鉴别特征[J]. 光谱学与光谱分析, 2015, 35(8): 2 164-2 169. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201508022.htm

    Wang Y, Shi G H, Shi W, et al. Infrared spectral characteristics of ambers from three main sources (Baltic, Dominica and Myanmar) and their implications[J]. Spectroscopy and Spectral Analysis, 2015, 35(8): 2 164-2 169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201508022.htm

    [6] 代荔莉, 施光海, 袁野, 等. 婆罗洲和马达加斯加柯巴树脂红外光谱特征及其与外观相似琥珀的快速鉴别[J]. 光谱学与光谱分析, 2018, 38(7): 2 123-2 131. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201807028.htm

    Dai L L, Shi G H, Yuan Y, et al. Infrared spectroscopic characteristics of Borneo and Madagascar copal resins and rapid identification between them and ambers with similar appearances[J]. Spectroscopy and Spectral Analysis, 2018, 38(7): 2 123-2 131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201807028.htm

    [7]

    Liu Y, Shi G H, Wang S. Color phenomena of blue amber[J]. Gems & Gemology, 2014, 50(2): 134-140.

    [8] 白莹, 郑晓华, 尹作为. 缅甸琥珀的三维荧光光谱特征研究[J]. 光谱学与光谱分析, 2020, 40(5): 1 473-1 477. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202005032.htm

    Bai Y, Zheng X H, Yin Z W. Characterization of Burmese amber with three-dimensional fluorescence[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1 473-1 477. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202005032.htm

    [9]

    Li X P, Wang Y M, Shi G H, et al. Evaluation of natural ageing responses on Burmese amber durability by FTIR spectroscopy with PLSR and ANN models[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023(285): 121 936.

    [10] 卢碧玥, 杨东秀, 方慧, 等. 缅甸琥珀内含物的初步研究及其意义[J]. 岩石矿物学杂志, 2014(S2): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW2014S2019.htm

    Lu B Y, Yang D X, Fang H, et al. A preliminary study of inclusions in the burmite (Myanmar amber) and their significance[J]. Acta Petrologica et Mineralogica, 2014(S2): 117-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW2014S2019.htm

    [11]

    Lin S H, Yang T Y, Huang K Y, et al. Pressed amber imitation of "root amber"[J]. Gems & Gemology, 2022(58): 386-387.

    [12]

    Clarke D J, Limaye A, Mckenna D D, et al. The weevil fauna preserved in Burmese amber: Snapshot of a unique, extinct lineage (Coleoptera: Curculionoidea)[J]. Diversity-Basel, 2019(11): 219.

    [13]

    Yu T Y, Wang B, Pan H Z. New terrestrial gastropods from Mid-Cretaceous Burmese amber[J]. Cretaceous Research, 2018(90): 254-258.

    [14]

    Vea I M, Grimaldi D A. Diverse new scale insects (Hemiptera: Coccoidea) in amber from the Cretaceous and Eocene with a phylogenetic framework for fossil Coccoidea[J]. American Museum Novitates, 2015(3 823): 1-80.

    [15]

    Penney D. The fossil spider family Lagonomegopidae in cretaceous ambers with descriptions of a new genus and species from Myanmar[J]. Journal of Arachnology, 2005, 33(2): 439-444.

    [16]

    Shi G H, Grimaldi D A, Harlow G E, et al. Age constraint on Burmese amber based on U-Pb dating of zircons[J]. Cretaceous Research, 2012(37): 155-163.

    [17]

    Cruickshank R D, Ko K. Geology of an amber locality in the Hukawng Valley, Northern Myanmar[J]. Journal of Asian Earth Sciences, 2003, 21(5): 441-455.

    [18] 涂聪, 钱呈, 陈涛. 缅甸根珀的宝石学特征[J]. 宝石和宝石学杂志(中英文), 2020, 22(4): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202004002.htm

    Tu C, Qian C, Chen T. Gemmological characteristic of root amber from Myanmar[J]. Journal of Gems & Gemmology, 2020, 22(4): 13-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202004002.htm

    [19]

    Gaigalas A, Halas S. Stable isotopes (H, C, S) and the origin of Baltic amber[J]. Geochronometria, 2009(33): 33-36.

    [20]

    Liu Z, Pagani M, Zinniker D, et al. Global cooling during the Eocene-Oligocene climate transition[J]. Science, 2009, 323(5 918): 1 187-1 190.

    [21]

    Abduriyim A, Kimura H, Yokoyama Y, et al. Characterization of "green amber" with infrared and nuclear magnetic resonance spectroscopy[J]. Gems & Gemology, 2009, 45(3): 158-177.

    [22]

    Wang Y M, Yang M X, Yang Y P. Experimental study on the heat treatment of Baltic amber[J]. Gems & Gemology, 2014, 50(2): 142-150.

    [23]

    Wang Y M, Li Y, Liu F, et al. Characteristics of hydrothermally treated beeswax amber[J]. Gems & Gemology, 2019, 55(3): 370-387.

    [24] 王雅玫, 王芊莹, 聂淑芳. 蜜蜡中气泡特征与品质的关系[J]. 宝石和宝石学杂志(中英文), 2016, 18(5): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201605005.htm

    Wang Y M, Wang Q Y, Nie S F. Gas bubble characteristic of translucent to opaque amber and its relationship to quality assessment[J]. Journal of Gems & Gemmology, 2016, 18(5): 20-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201605005.htm

图(5)  /  表(1)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  118
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-18
  • 刊出日期:  2023-07-30

目录

    /

    返回文章
    返回