出土琥珀产地指纹特征筛选与溯源方法研究——以汉代出土琥珀为例

李妍, 赵彤, 刘琦, 王雅玫, 张志清

李妍, 赵彤, 刘琦, 王雅玫, 张志清. 出土琥珀产地指纹特征筛选与溯源方法研究——以汉代出土琥珀为例[J]. 宝石和宝石学杂志(中英文), 2023, 25(4): 11-29. DOI: 10.15964/j.cnki.027jgg.2023.04.002
引用本文: 李妍, 赵彤, 刘琦, 王雅玫, 张志清. 出土琥珀产地指纹特征筛选与溯源方法研究——以汉代出土琥珀为例[J]. 宝石和宝石学杂志(中英文), 2023, 25(4): 11-29. DOI: 10.15964/j.cnki.027jgg.2023.04.002
LI Yan, ZHAO Tong, LIU Qi, WANG Yamei, ZHANG Zhiqing. Fingerprint Characteristic and Origin Traceability of Amber Artefacts——Application in Archaeological Amber from Han Dynasty[J]. Journal of Gems & Gemmology, 2023, 25(4): 11-29. DOI: 10.15964/j.cnki.027jgg.2023.04.002
Citation: LI Yan, ZHAO Tong, LIU Qi, WANG Yamei, ZHANG Zhiqing. Fingerprint Characteristic and Origin Traceability of Amber Artefacts——Application in Archaeological Amber from Han Dynasty[J]. Journal of Gems & Gemmology, 2023, 25(4): 11-29. DOI: 10.15964/j.cnki.027jgg.2023.04.002

出土琥珀产地指纹特征筛选与溯源方法研究——以汉代出土琥珀为例

基金项目: 

湖北省哲学社会科学计划项目 21G007

珠宝检测技术创新中心项目 CIGTXM-03-202304

中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目 CUGDCJJ202221

详细信息
    作者简介:

    李妍(1987-), 女, 特任教授, 主要从事琥珀宝石学和琥珀文化研究工作。E-mail: yanli@cug.edu.cn

    通讯作者:

    王雅玫(1962-), 女, 副教授, 主要从事珠宝教育和宝石学研究工作。E-mail: wangym@cug.edu.cn

  • 中图分类号: TS93

Fingerprint Characteristic and Origin Traceability of Amber Artefacts——Application in Archaeological Amber from Han Dynasty

  • 摘要: 汉代是我国古代琥珀艺术发展的重要时期, 琥珀的出土数量、形制均在汉代时达到了一个新的高度。当采用无损谱学手段对风化、氧化的出土琥珀进行测试时, 样品表面的渣化、粉化状态会给无损测试和结果分析带来不小的挑战。本文选取来自波罗的海、缅甸和辽宁抚顺的113块不同氧化程度的琥珀原石样品作为参考样品, 以探明氧化蚀变给不同产地琥珀的谱学特征带来的具体影响, 利用了显微观察和红外光谱等测试手段采集了波罗的海、缅甸和抚顺琥珀氧化前后的特征。研究结果表明, 对于未氧化和氧化程度较低的琥珀原石样品, 通过红外光谱可以较好的对3个产地的琥珀进行区分。在对琥珀原石样品红外光谱数据处理后, 建立了用于出土琥珀产地溯源的红外光谱数据库和基于谱峰识别的产地溯源流程, 并结合模式识别分析方法建立了琥珀原石产地溯源模型, 该模型对113件琥珀原石的产地识别效果较好, 准确率达到了96.5%。采用琥珀原石样品红外光谱数据库分别建立适用于两地出土琥珀的产地溯源模型, 模型分类结果表明海昏侯墓出土琥珀均来自缅甸, 而湖南汉墓中3件出土琥珀来自波罗的海, 1件来自缅甸。由此可见, 在汉代时波罗的海琥珀和缅甸琥珀便已传入了中国并被广泛使用。
    Abstract: Han Dynasty was an important period in the development of ancient Chinese amber art, during which the quantity and shape of unearthed amber reached a new height. However, the deteriorated and oxidised skin of the excavated amber poses a significant challenge to non-destructive spectroscopy testing and result analysis. The article selected 113 pieces of rough amber samples with different degrees of oxidation from the Baltic region, Myanmar, and Fushun, China, were selected as reference samples to explore the specific effects of oxidation and erosion on the spectral characteristics of amber origin traceability. Microscopic observation and infrared spectroscopy were used to collect the characteristics of amber from the Baltic region, Myanmar, and Fushun before and after oxidation. The results showed that infrared spectroscopy could effectively distinguish amber from the three origins for unoxidised and slightly oxidised amber. After processing the infrared data of the rough amber samples, infrared database for the origin traceability of unearthed amber was established, and an origin tracing process based on spectral peak identification was developed. An amber origin tracing model was established using pattern recognition analysis, which achieved a good identification effect for 113 pieces of amber samples, with an accuracy rate of 96.5%. Origin tracing models applicable to amber unearthed from two different regions were separately established using the rough amber materials?infrared database. The classification results of the models indicated that the amber unearthed from the Haihun Marquis?Tomb all came from Myanmar, while 3 pieces of amber unearthed from Han Dynasty tombs in Hunan Province originated from the Baltic region and one from Myanmar. Therefore, it can be seen that amber both from the Baltic region and Myanmar were introduced into China and widely used during the Han Dynasty.
  • 致谢: 江西南昌汉代海昏侯国遗址管理局局长兼博物馆馆长彭明瀚研究员提供了样品和学术支持,在此表示感谢。
  • 图  1   汉代出土琥珀墓葬的分布图及代表性文物(不完全统计,底图来源于自然资源部地图技术审查中心标准地图服务系统)[5, 10-18]

    Figure  1.   Distribution of Han tombs with archaeological amber artefacts (incomplete statistics, the base map is from the standard map service system of the Map Technology Review Center of the Ministry of Natural Resources)

    图  2   本研究收集的琥珀原石样品:(a-e)波罗的海金珀和蜜蜡,从左到右、从上到下编号依次为BA-1~BA-84;(f-g)缅甸琥珀,包括金珀和血珀,从左到右、从上到下编号依次为BU-1~ BU-22;(h)抚顺金珀和棕珀,从左到右、从上到下编号为FS-1 ~ FS-7[10]

    Figure  2.   Rough amber samples in this study: (a-e) the golden amber and beeswaxey amber from the Baltic, labelled as BA-1—BA-84 from left to right, top to bottom; (f-g)amber from Myanmar, including gold amber and blood amber, labelled as BU-1—BU-22 from left to right, top to bottom; (h)gold and brown amber from Fushun, China, labelled as FS-1—FS-7 from left to right, top to bottom

    图  3   本文所测试的出土琥珀样品:(a)南昌海昏侯墓出土的4件琥珀饰[10];(b)湖南汉墓出土琥珀碎片

    Figure  3.   Archaeological amber artefacts in this study: (a) amber from Haihun Marquis' Tomb; (b)amber from Han tombs in Hunan Province

    图  4   血珀氧化皮的纵向(a,b)及颜色不均的氧化皮横向分区(c,d)

    Figure  4.   Vertical oxide skin (a, b) and oxide skin with uneven colour and horizontal zoning of blood amber (c, d)

    图  5   琥珀氧化皮中的裂纹:(a)金珀中网状裂纹;(b)血珀的网状裂纹;(c)黑色杂质侵入裂纹;(d)裂隙处氧化晕扩散

    Figure  5.   Cracks in amber oxide skin: (a)reticular cracks in the golden amber; (b)reticular cracks in blood amber; (c)black impurities penetrated into cracks; (d)diffusion of oxidation halos at cracks

    图  6   波罗的海、缅甸和抚顺琥珀的红外吸收光谱:(a)测试光谱范围4 000 ~ 400 cm-1;(b)测试光谱范围2 000~400 cm-1

    Figure  6.   Infrared spectra of amber from Baltic, Myanmar, and Fushun: (a) spectra range of 4 000 - 400 cm-1; (b) spectra range of 2 000 - 400 cm-1

    图  7   波罗的海琥珀氧化前后的红外吸收光谱:(a)测试光谱范围4 000 ~ 400 cm-1;(b)测试光谱范围2 000~600 cm-1

    Figure  7.   Infrared spectra of amber from Baltic before and after oxidation: (a) spectra range of 4 000-400 cm-1; (b)spectra range of 2 000-600 cm-1

    图  8   缅甸琥珀氧化前后的红外吸收光谱:(a) 测试光谱范围4 000 ~ 400 cm-1;(b)测试光谱范围2 000~600 cm-1

    Figure  8.   Infrared spectra of amber from Myanmar before and after oxidation: (a)spectra range of 4 000-400 cm-1; (b)spectra range of 2 000-600 cm-1

    图  9   抚顺琥珀氧化前后的红外吸收光谱:(a)测试光谱范围4 000 ~ 400 cm-1;(b)测试光谱范围2 000~400 cm-1

    Figure  9.   Infrared spectra of amber from Fushun before and after oxidation: (a)spectra range of 4 000-400 cm-1; (b) spectra range of 2 000-400 cm-1

    图  10   基于红外光谱特征谱峰的出土琥珀产地溯源方法流程图

    Figure  10.   The flowchart of tracing the origin of Chinese archaeological amber artefacts by ATR-FTIR

    图  11   (a) 主成分PC1 ~ PC3得分图,箭头表示缅甸琥珀的氧化作用以及(b) 3个产地113个琥珀原石的典型判别函数散点图

    Figure  11.   PC1-PC3 score plot. The arrow indicated the oxidation effect on the amber from Myanmar (a) and canonical discriminant function scatter plot of 113 rough amber samples from 3 origins (b)

    图  12   海昏侯墓1号虫珀内外部显微特征[10]:(a)整体形态;(b, c)内部昆虫内含物;(d)表面裂纹

    Figure  12.   Microscopic characteristics of the internal and external parts of No.1 insect amber artefact from Haihun Marquis' Tomb, Western Han Dynasty[10]: (a) overall morphology; (b, c)the Diptera Tabanidae inside; (d) surface cracks

    图  13   海昏侯墓2号样品的内外部显微特征[10]:(a-c)外部风化纹;(d-e)流纹和红色点状包裹体以及(f)缅甸琥珀商业样品中的红色点状包裹体(用于对比)

    Figure  13.   External (a-c) and internal (d-e) features of No.2 amber artefact excavated from Haihun Marquis' Tomb and the red spot inclusions in amber from Myanmar (f)

    图  14   海昏侯墓3号琥珀样品(a,c)和4号琥珀样品(b,d)的内外部特征以及缅甸血珀样品(e,f)的冰裂纹[10]

    Figure  14.   External and internal features of No.3 (a, c) and No.4 (b, d) amber artefact samples and cracks in the bloodish amber from Myanmar (e, f)[10]

    图  15   4件海昏侯样品以及缅甸、波罗的海琥珀未氧化区域的红外光谱[10]:(a)测试范围1 800 ~ 400 cm-1;(b)测试范围4 000 ~ 400 cm-1; (c)测试范围1 400 ~ 400 cm-1; (d)测试范围4 000 ~ 400 cm-1

    Figure  15.   Infrared spectra of 4 amber artefacts from Haihun Marquis' Tomb and the unoxidized parts of the amber from Myanmar and Baltic [10]: (a) spectra range of 1 800 -400 cm-1; (b)spectra range of 4 000 - 400 cm-1; (c) spectra range of 1 400-400 cm-1; (d) spectra range of 4 000 - 400 cm-1

    图  16   (a) 海昏侯出土琥珀与3个产地琥珀原石的主成分PC1 ~ PC3得分图以及(b)3个产地113个琥珀原石和4个海昏侯出土产地未知琥珀的典型判别函数散点图

    Figure  16.   (a) PC1-PC3 score plot of rough amber from 3 origins and archaeological samples from Haihun Marquis' Tomb (No.1-No.4) and (b) canonical discriminant function scatter plot of 113 rough amber from 3 origins and 4 archaeological amber from unknown origin unearthed from Haihun Marquis' Tomb

    图  17   湖南汉墓出土琥珀样品的显微特征:(a)样品20220801-3内部可见圆形放射状裂痕;(b)样品20220801-3外部可见荔枝纹状的氧化层;(c)样品20220801-4表面的冰裂纹;(d) 样品20220801-4近表面处一组锯齿状裂

    Figure  17.   Microscopic characteristics of amber samples unearthed from Han tombs in Hunan Province: (a)circular radial cracks in sample 20220801-3; (b)litchi patterned oxide skin in sample 20220801-3; (c)ice cracks on the surface of sample 20220801-4; (d)a set of serrated cracks near the surface of sample 20220801-4

    图  18   样品20220801-3、20220801-5、20220801-6和波罗的海琥珀原石的红外光谱:(a)测试光谱范围1 800~400 cm-1;(b)测试光谱范围4 000~400 cm-1,以及样品20220801-4和缅甸、抚顺琥珀原石的红外光谱:(c)测试光谱范围1 800~400 cm-1;(d)测试光谱范围4 000~400 cm-1

    Figure  18.   Infrared spectra of amber samples 20220801-3, 20220801-5, 20220801-6 and rough Baltic amber: (a)spectra range of 1 800-400 cm-1; (b)spectra range of 4 000-400 cm-1; and infrared spectra of amber sample 20220801-4 and rough amber from Myanmar and Fushun: (c)spectra range of 1 800-400 cm-1; (d)spectra range of 4 000-400 cm-1

    图  19   (a) 湖南汉墓出土琥珀与3个产地琥珀原石的主成分PC1-PC3得分图和(b)3个产地113个琥珀原石和4个湖南汉墓出土产地未知琥珀的典型判别函数散点图

    Figure  19.   (a) PC1-PC3 score plot of archaeological samples from Han tomb in Hunan Province and rough amber from 3 origins and (b) canonical discriminant function scatter plot of 113 rough amber from 3 origins and 4 archaeological amber from unknown origin unearthed from Han Tomb in Hunan Province

    表  1   琥珀红外光谱吸收峰的位置与官能团归属[28, 32]

    Table  1   Positions and assignment of infrared

    官能团归属 波数范围/cm-1
    C=C上连接CH2上的C-H伸缩振动 3 080 ~ 3 020
    脂肪族CH3和CH2的C-H伸缩振动 2 950 ~ 2 820
    酯类羰基C=O伸缩振动 1 740 ~ 1 710
    羧酸羰基C=O伸缩振动 1 710 ~ 1 690
    脂肪族CH3-CH2对称弯曲振动 1 440 ~ 1 470
    脂肪族CH3-CH2不对称弯曲振动 1 390 ~ 1 360
    C-O伸缩振动 1 260 ~ 1 030
    CH3和CH2上的C-H面内摇摆振动 974 ~ 921
    C=C上CH2上C-H面外弯曲振动 888 ~ 886
    CH2上的C-H面内摇摆振动 850 ~ 810
    下载: 导出CSV

    表  2   主成分分析中前15个主成分的特征值、方差百分比及累计贡献率

    Table  2   The eigenvalues and percentage of variance of PC1-PC15

    主成分序号 特征值 方差百分比/% 累计贡献率/%
    1 0.023 34 48.17 48.17
    2 0.010 18 21.01 69.18
    3 0.007 01 14.47 83.65
    4 0.002 49 5.14 88.80
    5 0.001 93 3.99 92.79
    6 0.000 73 1.50 94.29
    7 0.000 61 1.25 95.54
    8 0.000 44 0.91 96.45
    9 0.000 39 0.81 97.26
    10 0.000 25 0.51 97.78
    11 0.000 19 0.39 98.16
    12 0.000 16 0.33 98.49
    13 0.000 15 0.30 98.79
    14 0.000 11 0.24 99.03
    15 0.000 09 0.19 99.22
    下载: 导出CSV

    表  3   交叉检验后的分类结果

    Table  3   Classification results after cross inspection

    分类结果a, c
    产地 预测组成员信息 总计
    波罗的海 缅甸 抚顺
    原始 计数/个 波罗的海 84 0 0 84
    缅甸 0 22 0 22
    抚顺 0 1 6 7
    占比/% 波罗的海 100.0 0 0 100.0
    缅甸 0 100.0 0 100.0
    抚顺 0 14.3 85.7 100
    交叉验证b 计数/个 波罗的海 83 0 1 84
    缅甸 0 20 2 22
    抚顺 0 1 6 7
    占比/% 波罗的海 98.8 0 1.2 100.0
    缅甸 0 90.9 9.1 100.0
    抚顺 0 14.3 85.7 100.0
    a.正确地对99.1 % 个原始已分组个案进行了分类; b.仅针对分析中的个案进行交叉验证。在交叉验证中,每个个案都由那些从该个案以外的所有个案派生的函数进行分类; c.正确地对96.5% 个进行了交叉验证的已分组个案进行了分类
    下载: 导出CSV
  • [1] 四川省文物考古研究所彭明瀚研究员. 三星堆祭祀坑[M]. 北京: 文物出版社, 1999.

    Sichuan Institute of Cultural Relics and Archaeology. Sanxingdui sacrifice pit[M]. Beijing: Cultural Relics Press, 1999. (in Chinese)

    [2]

    Czebreszuk J. Amber between the Baltic and the Aegean in the third and second millennia BC (an outline of major issues)[C]//International Conference Bronze and Early Iron Age Interconnections and Contemporary Developments between the Aegean and the Regions of the Balkan Peninsula. Central and Northern Europe University of Zagreb, 2005: 363-369.

    [3] 许晓东. 中国古代琥珀艺术[M]. 北京: 紫禁城出版社, 2011.

    Xu X D. Chinese ancient amber culture[M]. Beijing: The Forbidden City Publishing House, 2011. (in Chinese)

    [4] 许晓东. 中国古代琥珀艺术--商至元[J]. 故宫博物院院刊, 2009(6): 20. https://www.cnki.com.cn/Article/CJFDTOTAL-GGBW200906010.htm

    Xu X D. Chinese ancient amber culture-from Shang to Yuan Dynasty[J]. Palace Museum Journal, 2009(6): 20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GGBW200906010.htm

    [5] 安天. 汉代琥珀制品的考古发现与出土地域分析[J]. 常州文博论丛, 2017(1): 40-52.

    An T. Archaeological discovery and regional analysis of amber products in Han Dynasty[J]. Changzhou Wen Bo Lun Cong, 2017(1): 40-52. (in Chinese)

    [6] 赵德云. 西周至汉晋时期中国外来珠饰研究[D]. 成都: 四川大学, 2008.

    Zhao D Y. Foreign beads and pendants in ancient China: From Western Zhou to Eastern Jin Period[D]. Chengdu: Sichuan University, 2008. (in Chinese)

    [7] 蔡青. 从汉代琥珀珠饰艺术看中西文化的融合[J]. 宝石和宝石学杂志(中英文), 2022, 24(6): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202206009.htm

    Cai Q. Exploring the integration of Chinese and western cultures from the art of amber beads of Han Dynasty[J]. Journal of Gems & Gemmology, 2022, 24(6): 93-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202206009.htm

    [8] (清)王先谦. 后汉书集解[M]. 北京: 中华书局, 1984.

    (Qing Dynasty) Wang X Q. Explanation of history of the later Han Dynasty[M]. Beijing: Zhonghua Book Company, 1984. (in Chinese)

    [9]

    Li X P, Wang Y M, Shi G H, et al. Evaluation of natural ageing responses on Burmese amber durability by FTIR spectroscopy with PLSR and ANN models[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023(285): 121936.

    [10]

    Zhao T, Peng M H, Yang M X, et al. Effects of weathering on FTIR spectra and origin traceability of archaeological amber: The case of the Han Tomb of Haihun Marquis, China[J]. Journal of Archaeological Science, 2023(153): 105753.

    [11] 定县博物馆. 河北定县43号汉墓发掘简报[J]. 文物, 1973(11): 17. https://www.cnki.com.cn/Article/CJFDTOTAL-WENW198108000.htm

    Dingxian Museum. Brief excavation report of No. 43 Han Tomb in Dingxian county, Hebei Province[J]. Cultural Relics, 1973(11): 17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WENW198108000.htm

    [12] 广西壮族自治区文物工作队. 合浦风门岭汉墓[M]. 北京: 科学出版社, 2006.

    Guangxi Cultural Relics Task Force. Fengmenling Han Tomb in Hepu[M]. Beijing: Science Press, 2006. (in Chinese)

    [13] 王恺, 邱永生. 徐州狮子山西汉楚王陵发掘简报[J]. 文物, 1998(8): 36. https://www.cnki.com.cn/Article/CJFDTOTAL-WENW199808000.htm

    Wang K, Qiu Y S. Brief excavation report of Chu king tomb of western Han Dynasty in Xuzhou Lion Mountain[J]. Cultural Relics, 1998(8): 36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WENW199808000.htm

    [14] 游有山, 谢崇崐. 云南昭通市鸡窝院子汉墓[J]. 考古, 1986(11): 3. https://www.cnki.com.cn/Article/CJFDTOTAL-KAGU198611015.htm

    You Y S, Xie C K. Jiwoyuanzi Han tomb in Zhaotong, Yunnan Province[J]. Archaeology, 1986(11): 3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KAGU198611015.htm

    [15] 广州市文物管理委员会, 广州市博物馆. 广州汉墓[M]. 北京: 文物出版社, 1981.

    Guangzhou Cultural Heritage Management Committee, Guangzhou Museum. The Han tombs in Guangzhou[M]. Beijing: Cultural Relics Press, 1981. (in Chinese).

    [16] 李毓芳. 陕西咸阳马泉西汉墓[J]. 考古, 1979(2): 12. https://www.cnki.com.cn/Article/CJFDTOTAL-KAGU197902004.htm

    Li Y F. Maquan Western Han tomb in Xianyang, Shaanxi[J]. Archaeology, 1979(2): 12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KAGU197902004.htm

    [17] 甘博文. 甘肃武威雷台东汉墓清理简报[J]. 文物, 1972(2): 14. https://www.cnki.com.cn/Article/CJFDTOTAL-WENW197202003.htm

    Gan B W. Excavation on Leitai Eastern Han tomb in Wuwei, Gansu[J]. Cultural Relics, 1972(2): 14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WENW197202003.htm

    [18] 郑禄红, 翁建红. 山东青岛市土山屯墓地的两座汉墓[J]. 考古, 2017(10): 2, 34-61. https://www.cnki.com.cn/Article/CJFDTOTAL-KAGU201710004.htm
    [19]

    Zheng L H, Weng J H. Two Han tombs at Tushantun cemetery in Qingdao, Shandong Province[J]. Archaeology, 2017(10): 2, 34-61. (in Chinese)

    [20] 杨军, 徐长青. 南昌市西汉海昏侯墓[J]. 考古, 2016(7): 18. https://www.cnki.com.cn/Article/CJFDTOTAL-KAGU201607005.htm

    Yang J, Xu C Q. Marquis of Haihun's tomb of the Western Han Dynasty in Nanchang, Jiangxi[J]. Archaeology, 2016(7): 18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KAGU201607005.htm

    [21]

    Liu Q, Yuan Y M, Zhang Y H, et al. Fourier transform infrared spectroscopy (FTIR) characteristics of ancient amber artifacts of the Han Dynasty from Hunan, China[J]. Palaeoentomology, 2022, 5(4): 354-361.

    [22]

    Wang Y, Yang M, Nie S, et al. Gemmological and spectroscopic features of untreated vs. heated amber[J]. Journal of Gemmology, 2017, 35(6): 530-542.

    [23] 董琳玲. 缅甸血珀的氧含量及颜色变化特征[J]. 宝石和宝石学杂志, 2021, 23(5): 60-64. doi: 10.15964/j.cnki.027jgg.2021.05.007

    Dong L L. Oxygen content and colour change characteristic of blood amber from Myanmar[J]. Journal of Gems & Gemmology, 2021, 23(5): 60-64. (in Chinese) doi: 10.15964/j.cnki.027jgg.2021.05.007

    [24]

    Pastorelli G, Richter J, Shashoua Y. Evidence concerning oxidation as a surface reaction in Baltic amber[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012(89): 268-269.

    [25]

    Wang Y M, Yang M X, Yang Y P, et al. Experimental studies on the heat treatment of Baltic amber[J]. Gems & Gemology, 2014, 50(2): 142-150.

    [26]

    Thickett D, Cruickshank P, Ward C. The conservation of amber[J]. Studies in Conservation, 1995, 40(4): 217-226.

    [27]

    Pastorelli G, Shashoua Y, Richter J. Surface yellowing and fragmentation as warning signs of depolymerisation in Baltic amber[J]. Polymer Degradation & Stability, 2013, 98(11): 2317-2322.

    [28] 王雅玫, 杨明星, 杨一萍, 等. 鉴定热处理琥珀的关键证据[J]. 宝石和宝石学杂志(中英文), 2010, 12(4): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201004009.htm

    Wang Y M, Yang M X, Yang Y P, et al. Critical evidences for identification of heated ambers[J]. Journal of Gems & Gemmology, 2010, 12(4): 7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201004009.htm

    [29]

    Brody R H, Edwards H G M, Pollard A M. A study of amber and copal samples using FT-Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2001, 57(6): 1325-1338.

    [30]

    Anderson K B. Investigation of C-ring aromatic diterpenoids in Raitan amber by pyrolysis-GC-matrix-isolation FTIR-MS[J]. Geochemical Transactions, 2006, 7(1): 2.

    [31]

    Beck C, Wilbur E, Meret S, et al. The infrared spectra of amber and the identification of Baltic amber[J]. Archaeometry, 1965, 8(1): 96-109.

    [32]

    Lambert J B, Frye J S. Carbon functionalities in amber[J]. Science, 1982, 217(4554): 55-57.

    [33]

    Montoro O R, Tortajada J, Lobato Á, et al. Theoretical (DFT) and experimental (Raman and FTIR) spectroscopic study on communic acids, main components of fossil resins[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020(224): 117405.

    [34] 张志清. 基于光谱学特征的琥珀产地溯源应用及其荧光物质研究[D]. 武汉: 中国地质大学, 2021.

    Zhang Z Q. Spectral characteristics of amber and their application in provenance determination, and study on fluorescent components[D]. Wuhan: China University of Geosciences, 2021. (in Chinese)

    [35]

    Jolliffe I T. Principal component analysis for special types of data[M]. Berlin: Springer, 2002.

    [36]

    Wang Y, Zhao Y, Wang X, et al. Exploration of coarse-to-fine FTIR feature extraction for handlebar grip materials: A common path for forensic examination of microtraces[J]. Microchemical Journal, 2023(187): 108 399.

图(19)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 刊出日期:  2023-07-30

目录

    /

    返回文章
    返回