Gemmological and Spectral Characteristics of Pink Garnet from Mogok, Myanmar
-
摘要: 采用折射仪等常规宝石学仪器、电子探针(EPMA)、激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)、激光拉曼光谱仪、傅里叶变换红外光谱仪和紫外-可见光谱仪对2颗产自缅甸抹谷的粉色石榴石样品进行测试。红外光谱及拉曼光谱表明其属于较纯净的钙铝榴石端元。电子探针测试得到其化学成分均接近钙铝榴石端元,平均晶体化学式分别为Ca3.08(Al1.84Ti0.06Fe0.01Mg0.01)1.92[(Si2.90Al0.10)3.00O12] 和Ca3.06(Al1.84Ti0.08Fe0.01Mg0.01)1.94[(Si2.91Al0.09)3.00O12]。LA-ICP-MS测试结果表明,2颗粉色石榴石样品均含有Ti、Fe、Zr、Mn、Nb、Ga、Sn等微量元素,相比于颜色相近的墨西哥草莓红钙铝榴石前者Ti含量较高,在5 444~10 035 ppm,而Mn含量较低,仅有47~132 ppm。紫外-可见吸收光谱结果显示,2颗粉色石榴石样品分别在489 nm和495 nm处有吸收带,均有以550 nm为中心的吸收宽带,结合微量元素测试结果及其他学者对石榴石及其他硅酸盐矿物中Mn离子吸收光谱的研究分析,推测样品的粉红色由Mn3+导致。Abstract: In this paper, 2 pink garnet samples from Mogok, Myanmar were studied by electron microprobe, laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS), Raman spectrometer, infrared spectrometer and ultraviolet-visible spectrometer and other conventional gemmological tests. Infrared and Raman spectra results indicated that they are close to the grossular endmember. The chemical composition of the samples was tested by electron microprobe. The result also demonstrated that the 2 samples are close to the endmember of grossular. The average chemical structure formulas of the samples G1 and G2 are Ca3.08(Al1.84Ti0.06Fe0.01Mg0.01)1.92[(Si2.90Al0.10)3.00O12]and Ca3.06(Al1.84Ti0.08Fe0.01Mg0.01)1.94[(Si2.91Al0.09)3.00O12], respectively. The test result of LA-ICP-MS showed that both samples contain trace elements such as Ti, Fe, Zr, Mn, Nb, Ga and Sn. The content of Ti in the samples, ranging from 5 444 to 10 035 ppm, is higher than that in raspberry-red grossular from Mexico, while the content of Mn is lower, only 47 to 132 ppm. Ultraviolet-visible spectra analysis revealed that the samples G1 and G2 have absorption bands at 489 nm and 495 nm, respectively. There is an absorption broad band centered at 550 nm in both samples. Combined with the trace elements in the samples and the previous research about the role of Mn in garnet and other silicates, it is believed that the absorption broad bands are related to Mn3+, which means their colour is probably due to the presence of small amounts of Mn3+.
-
致谢: 感谢稀有宝石爱好者熊小康提供样品。
-
表 1 缅甸抹谷粉色石榴石样品的化学成分
Table 1 Chemical compositions of pink garnet samples from Mogok, Myanmar
wB/% 氧化物 G1-1 G1-2 G1-3 G1-4 G1-5 G2-1 G2-2 G2-3 G2-4 G2-5 CaO 38.355 37.810 38.136 38.107 38.012 38.151 38.448 38.588 38.163 38.296 FeOT 0.155 0.024 0.137 0.033 0.056 0.056 0.183 0.127 0.059 0.115 Na2O 0.018 0.017 0.032 0.025 - 0.030 0.024 0.056 - 0.011 MgO 0.072 0.053 0.081 0.047 0.036 0.052 0.060 0.055 0.046 0.051 Al2O3 21.746 21.680 22.125 21.904 21.306 21.925 22.034 21.753 22.021 22.108 SiO2 38.865 38.217 38.506 38.206 37.909 39.050 39.146 38.891 38.937 38.975 TiO2 1.053 1.152 1.112 1.134 1.183 1.385 1.525 1.486 1.524 1.565 MnO 0.006 0.038 0.009 0.002 0.009 - 0.028 - 0.036 0.006 Total 100.270 98.991 100.140 99.458 98.511 100.650 101.450 100.960 100.790 101.130 注:—表示低于检测限 表 2 缅甸抹谷粉色石榴石样品的微量元素
Table 2 Trace elements of pink garnet samples from Mogok, Myanmar
/ppm 样品号 Ti Mn Fe Ga Zr Nb Sn G1-1 5 661 49 948 123 925 368 112 G1-2 5 444 47 917 130 881 275 105 G1-3 7 454 98 835 116 849 853 82 G1-4 6 896 89 790 116 769 823 74 G1-5 6 952 89 806 117 756 689 81 G1-6 6 181 84 764 121 809 701 69 G2-1 8 004 105 939 112 630 1 030 75 G2-2 7 388 132 1215 104 768 1 545 80 G2-3 10 035 57 784 91 751 2 290 122 G2-4 6 425 53 939 116 910 464 125 G2-5 9 150 51 823 91 735 690 131 G2-6 9 122 56 832 94 816 714 132 注:仅列出每个测试点中都存在且大于10 ppm的元素 -
[1] 李娅莉, 薛秦芳, 李立平, 等. 宝石学教程[M]. 武汉: 中国地质大学出版社, 2006. Li Y L, Xue Q F, Li L P, et al. Gemology[M]. Wuhan: China University of Geosciences Press, 2006. (in Chinese)
[2] Chen S, Chen Y, Li Y B, et al. Cenozoic ultrahigh-temperature metamorphism in pelitic granulites from the Mogok metamorphic belt, Myanmar[J]. Science China Earth Sciences, 64(11): 1 873-1 892. doi: 10.1007/s11430-020-9748-5
[3] 雍晨颖. 墨西哥草莓红钙铝榴石的宝石矿物学特征研究[D]. 北京: 中国地质大学, 2019. Yong C Y. Study on the gemological and mineralogical characteristic of strawberry-red grossular garnet in Mexico[D]. Beijing: China University of Geosciences, 2019. (in Chinese)
[4] Geiger C A, Stahl A, Rossman G R. Raspberry-red grossular from Sierra de Cruces Range, Coahuila, Mexico[J]. European Journal of Mineralogy, 1999, 11(6): 1 109-1 113. doi: 10.1127/ejm/11/6/1109
[5] Krzemnicki M S. Pink grossular garnet from Mogok[J]. Facette Magazine, 2020(26): 26.
[6] 何谋春, 洪斌, 吕新彪. 钙铝榴石-钙铁榴石的拉曼光谱特征[J]. 光散射学报, 2002, 14(2): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-GSSX200202013.htm He M C, Hong B, Lyu X B. The feature of Raman spectra of grossular-andradite[J]. Chinese Journal of Light Scattering, 2002, 14(2): 121-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSSX200202013.htm
[7] Peng M S, Mao H K, Li D E, et al. Raman spectroscopy of garnet-group minerals[J]. Chinese Journal of Geochemistry, 1994, 13(2): 176-183. doi: 10.1007/BF02838517
[8] 范建良, 刘学良, 郭守国, 等. 石榴石族宝石的拉曼光谱研究及鉴别[J]. 应用激光, 2007, 27(4): 299, 310-313. https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG200704010.htm Fan J L, Liu X L, Guo S G, et al. Study on Raman spectra of garnets and relative identification[J]. Applied Laser, 2007, 27(4): 299, 310-313. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG200704010.htm
[9] Hofmeister A M, Chopelas A. Vibrational spectroscopy of end-member silicate garnets[J]. Physics and Chemistry of Minerals, 1991, 17(6): 503-526.
[10] Slack G A, Chrenko R M. Optical absorption of natural garnets from 1000 to 3 0000 wavenumbers[J]. Journal of the Optical Society of America, 1971, 61(10): 1 325-1 329. doi: 10.1364/JOSA.61.001325
[11] Vigier M, Fritsch E. Pink axinite from Merelani, Tanzania: Origin of colour and luminescence[J]. The Journal of Gemmology, 2020, 37(2): 192-205. doi: 10.15506/JoG.2020.37.2.192
[12] Blumentritt F, Fritsch E. Photochromism and photochromic gems: A review and some new data (part Ⅰ)[J]. Journal of Gemmology, 2021, 37(8): 780-800. doi: 10.15506/JoG.2021.37.8.780
[13] Gilles-Guery L, Galoisy L, Schnellrath J, et al. Mn3+ and the pink color of gem-quality euclase from northeast Brazil[J]. American Mineralogist, 2022, 107(3): 489-494. doi: 10.2138/am-2021-7838
[14] Rossman G R. Optical spectroscopy[J]. Reviews in Mineralogy and Geochemistry, 2014, 78(1): 371-398. doi: 10.2138/rmg.2014.78.9
[15] Burns R G, Burns R G. Mineralogical applications of crystal field theory[M]. Cambridge: Cambridge University Press, 1993.