Preliminary Study on Infrared Holographic Imaging of Amber from the Baltic Sea
-
摘要: 为探究琥珀的光学特性与成分之间的联系,进一步建立琥珀真伪辨识的有效红外参数,利用红外全息术对5块波罗的海琥珀样品进行了成像探测,通过显微镜、X射线荧光光谱术辅助解析成像效果。根据红外全息原理,利用近红外激光光源搭建平行光立式拍摄光路,获取了琥珀样品不同位置的全息图并进行重建,图像显示琥珀样品的不同位置成像效果具有差异。针对琥珀样品的不同位置对红外波段透过率差异的情况,进行X射线荧光光谱分析,获得其不同位置的元素含量,并结合红外全息成像结果,分析得出S元素和Si元素是影响琥珀红外透过率的主要元素,含有包裹体的位置比不含包裹体位置的所含S元素含量低,含有包裹体的位置比不含包裹体位置的所含Si元素含量高,Si元素有利于红外透过,S元素不利于红外透过。研究表明,立式平行光拍摄光路适合于琥珀红外全息成像,是一种新型琥珀表征光学工具。Abstract: In order to explore the relationship between the optical properties and composition of amber and further establish the effective infrared parameters of amber authenticity identification, infrared holographic method was used to image and detect 5 amber samples from the Baltic Sea, and the imaging effect was analyzed by microscope and X-ray fluorescence spectroscopy. According to the principle of infrared holography, the parallel light vertical shooting optical path is built by using the near-infrared laser light source, and the hologram of different positions of the amber sample is obtained and reconstructed, and the image shows that the imaging effect of the amber sample at different locations has differences. For the difference in the infrared band transmittance of the amber sample at different locations, X-ray fluorescence spectroscopy was performed to obtain the elemental content at different locations. Combined with the infrared holographic imaging results, the analysis showed that S element and Si element were the main elements affecting the infrared transmittance of amber, and the content of S element of the testing points with inclusion was lower than that without inclucion, and the content of Si element of the testing point with inclusion was higher than that without inclusion. It was concluded that the Si element was conducive to infrared transmission, and the S element was not conducive to infrared transmission. Studies have shown that the optical path of vertical parallel light shooting is suitable for amber infrared holographic imaging, which is a new optical tool for amber characterization.
-
Keywords:
- amber /
- infrared digital holography /
- infrared transmittance /
- shooting light path /
- the Baltic Sea
-
-
表 1 5块琥珀样品的基本特征
Table 1 Basic characteristic of the 5 amber samples
样品号 产地 特征描述 琥珀a 波罗的海 金黄色,不规则块状,透明度好,内含蚊子包裹体 琥珀b 波罗的海 黄褐色,不规则块状,透明度较差,内含昆虫翅膀包裹体 琥珀c 波罗的海 金黄色,不规则块状,透明度好,内含蚊子包裹体 琥珀d 波罗的海 金黄色,不规则块状,透明度好,有裂隙,内含昆虫包裹体 琥珀e 波罗的海 蜜黄色,不规则块状,透明度较好,内含昆虫包裹体 表 2 琥珀样品的XRF测试结果
Table 2 XRF results of the amber samples
wB/% 氧化物 琥珀a 琥珀b 琥珀c 琥珀d 琥珀e SO3 80.41 92.09 77.67 71.79 83.84 SiO2 16.22 5.30 18.04 25.80 14.22 K2O 1.373 - 1.94 - - CuO - 1.42 0.63 1.02 - -
[1] 王雅玫, 杨明星, 杨一萍, 等. 鉴定热处理琥珀的关键证据[J]. 宝石和宝石学杂志(中英文), 2010, 12(4): 25-30, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201004009.htm Wang Y M, Yang M X, Yang Y P, et al. Critical evidences for identification of heated ambers[J]. Journal of Gems & Gemmology, 2010, 12(4): 25-30, 63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201004009.htm
[2] 罗代兵, 马代川. 琥珀封装法用于X射线单晶衍射仪测试[J]. 实验技术与管理, 2021, 38(8): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL202108014.htm Luo D B, Ma D C. Test of X-ray single crystal diffractometer with amber encapsulation method[J]. Experimental Technology and Management, 2021, 38(8): 61-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL202108014.htm
[3] 朱莉, 邢莹莹. 琥珀及其常见仿制品的红外吸收光谱特征[J]. 宝石和宝石学杂志(中英文), 2008, 10(1): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200801011.htm Zhu L, Xing Y Y. Infrared absorption spectrum representation of amber and its imitation[J]. Journal of Gems & Gemmology, 2008, 10(1): 33-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200801011.htm
[4] 饶之帆, 谢劼, 董鹍. 琥珀、柯巴树脂、松香的光谱学特征[J]. 光谱实验室, 2013, 30(2): 720-724. https://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201302051.htm Rao Z F, Xie J, Dong K. Spectroscopy characteristics of amber, copal resin and rosin[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(2): 720-724. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201302051.htm
[5] 丘志力, 陈炳辉, 张瑜光. 柯巴树脂与琥珀的鉴定[J]. 宝石和宝石学杂志(中英文), 1999, 1(3): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB199901007.htm Qiu Z L, Chen B H, Zhang Y G. Testing of copal resin and amber[J]. Journal of Gems & Gemmology, 1999, 1(3): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB199901007.htm
[6] 邢莹莹. 衰减全反射红外光谱技术(ATR-FTIR)在琥珀检测与研究中的应用[J]. 光谱学与光谱分析, 2016, 36(7): 2 066-2 070. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201607016.htm Xing Y Y. Application of attenuated total reflectance infrared spectroscopy(ATR-FTIR)for amber identification and research[J]. Spectroscopy and Spectral Analysis, 2016, 26(7): 2 066-2 070. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201607016.htm
[7] 潘小青, 刘庆成. 红外技术的发展[J]. 华东地质学院学报, 2002(1): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200201015.htm Pan X Q, Liu Q C. The development of infrared technology[J]. Journal of East China Geological Institute, 2002(1): 66-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200201015.htm
[8] 张杨, 刘思源, 孙晶华, 等. 基于红外遥控的三基色LED调光调色实验教学系统[J]. 实验技术与管理, 2019, 36(7): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201907023.htm Zhang Y, Liu S Y, Sun J H, et al. Tri-primary color LED dimming and coloring experiment teaching system based on infrared remote control[J]. Experimental Technology and Management, 2019, 36(7): 72-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201907023.htm
[9] 杨旗. 石墨烯叠层结构光电响应特性与双波段探测方法研究[D]. 重庆: 中国科学院大学(中国科学院重庆绿色智能技术研究院), 2020. Yang Q. Photodetection characteristics of graphene stack structure and dual-band detection method[D]. Chongqing: Chinese Academy of Sciences(Chongqing Institute of Green and Intelligent Technology), 2020. (in Chinese)
[10] Fu R, Wu Z W, Pan Z Y, et al. Fluorine-induced surface metallization for ammonia synthesis under photoexcitation up to 1 550 nm[J]. Angewandte Chemie (International ed. in English), 2021, 60(2): 11 173-11 179.
[11] 刘万里. 红外全息检测技术的研究[D]. 昆明: 昆明理工大学, 2019. Liu W L. Research on infrared holographic detection technology[D]. Kunming: Kunming University of Science and Technology. (in Chinese)
[12] 杨超. 红外数字全息图像增强关键技术研究[D]. 南京: 南京邮电大学, 2019. Yang C. Research on key technologies of infrared digital holographic image enhancement[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019. (in Chinese)
[13] Allaria E, Brugioni S, De Nicola S, et al. Digital holography at 10.6 μm[J]. Optics Communications, 2003(215): 257-262.
[14] 於子奇, 於黄忠. 全息照相实验影响因素分析[J]. 实验技术与管理, 2019, 36(6): 193-197, 220. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201906047.htm Yu Z Q, YU H Z. Analysis of influencing factors in holography experiment[J]. Experimental Technology and Management, 2019, 36(6): 193-197, 220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201906047.htm
[15] Dyomin V, Gribenyukov A, Podzyvalov S, et al. Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2[J]. Applied Sciences, 2020, 10(2): 422.
[16] 张超, 齐丽曼, 王楠, 等. 波罗的海、多米尼加、墨西哥琥珀的产地鉴定探究[J]. 品牌与标准化, 2018(3): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-QYBZ201803016.htm Zhang C, Qi L M, Wang N, et al. Research on the identification of amber producing areas in Baltic Sea, Dominica and Mexico[J]. Brand and Standardization, 2018(3): 42-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QYBZ201803016.htm
[17] 刘嘉钧, 吕欣怡. 不同产地琥珀的鉴别特征研究进展[J]. 超硬材料工程, 2022, 34(2): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBKJ202202012.htm Liu J J, Lv X Y. Research progress on identification characteristics of ambers from different product areas[J]. Superhard Material Engineering, 2022, 34(2): 63-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBKJ202202012.htm
[18] 杨剑芳, 董小萍, 郭力, 等. 琥珀的化学研究进展[J]. 北京中医, 2002(4): 245-248. https://www.cnki.com.cn/Article/CJFDTOTAL-BJZO200204025.htm Yang J F, Dong X P, Guo L, et al. Research development about chemical composition of amber[J]. Beijing Journal of Traditional Chinese Medicine, 2002(4): 245-248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJZO200204025.htm
[19] 亓利剑, 周征宇, 廖宗廷, 等. 热压条件下柯巴树脂的酯化聚合行为及13C NMR表征[C]. 全国矿物科学与工程学术会议, 2010: 29-30. Qi L J, Zhou Z Y, Liao Z T, et al. Esterification polymerization behavior and 13C NMR characterization of copa resin under hot pressing[C]. National Conference on Mineral Science and Engineering, 2010: 29-30. (in Chinese)
[20] Grzonkowski J. Bernstein[M]. Ellert & Richter Verlag G, 1996.
[21] 徐红奕. 琥珀的有机元素分析[J]. 宝石和宝石学杂志(中英文), 2007, 9(1): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200701005.htm Xu H Y. Analysis on organic elements in amber[J]. Journal of Gems & Gemmology, 2007, 9(1): 12-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200701005.htm