同步辐射X射线荧光成像揭示淡水珍珠的韵律环带

高静, 张晋丽, 严建国

高静, 张晋丽, 严建国. 同步辐射X射线荧光成像揭示淡水珍珠的韵律环带[J]. 宝石和宝石学杂志(中英文), 2023, 25(1): 28-35. DOI: 10.15964/j.cnki.027jgg.2023.01.004
引用本文: 高静, 张晋丽, 严建国. 同步辐射X射线荧光成像揭示淡水珍珠的韵律环带[J]. 宝石和宝石学杂志(中英文), 2023, 25(1): 28-35. DOI: 10.15964/j.cnki.027jgg.2023.01.004
GAO Jing, ZHANG Jinli, Yen Chien-Kuo. Synchrotron Radiation μ-XRF Imaging Reveals Oscillatory Zoning of Freshwater Pearls[J]. Journal of Gems & Gemmology, 2023, 25(1): 28-35. DOI: 10.15964/j.cnki.027jgg.2023.01.004
Citation: GAO Jing, ZHANG Jinli, Yen Chien-Kuo. Synchrotron Radiation μ-XRF Imaging Reveals Oscillatory Zoning of Freshwater Pearls[J]. Journal of Gems & Gemmology, 2023, 25(1): 28-35. DOI: 10.15964/j.cnki.027jgg.2023.01.004

同步辐射X射线荧光成像揭示淡水珍珠的韵律环带

详细信息
    作者简介:

    高静(1988-),女,博士,主要从事宝石学和矿物物理方面的研究工作。E-mail: gaojing@mail.iggcas.ac.cn

  • 中图分类号: TS93

Synchrotron Radiation μ-XRF Imaging Reveals Oscillatory Zoning of Freshwater Pearls

  • 摘要: 珍珠和贝壳是常见的生物矿物,也是广受人们喜爱的装饰品,其微量元素的组成和分布不仅与母贝的代谢活动密切相关,也在一定程度上反映母贝的生长环境。然而,有关珍珠和贝壳中元素分布的研究存在大量空白,这阻碍了我们对其矿化机理和生长过程的理解。本文采用同步辐射X射线荧光成像技术,对若干颗淡水珍珠和海水珍珠的元素时空分布进行了系统地研究。研究首次揭示淡水珍珠存在环带结构,如Mn、Fe和Ba韵律环带,这些环带与珍珠的生长轨迹耦合。测试的所有淡水珍珠(无核珍珠、Akoya珍珠和“爱迪生”珍珠)都有Mn环带,不同珍珠的Mn环带在数量、宽度、位置及Mn浓度变化等方面有所差异。部分珍珠表现Mn环带与Fe环带协同变化的现象。分析认为:淡水珍珠的韵律环带是一种耗散结构,其形成主要受控于母贝的新陈代谢速率的变化,而非环境因素的周期性变化。研究并未在海水有核珍珠中观察到类似的Mn环带,因而Mn环带有望成为区分淡水珍珠与海水珍珠的关键特点之一。
    Abstract: Pearls and shells are common biominerals characterized with a highly organized laminar structure that is constructed by inorganic aragonite platelets alternating with organic material films. Formed in the bodies of mollusks, the uptake of trace elements into pearls and shells is under both biological control and environmental control. Thus, the spatial and temporal resolution of the trace element distributions could reflect the life activities of the mother mollusks and the chemistry of the environments. However, elemental maps in pearls and shells have not received due attention from previous studies. In this study, the elemental profile in cultivated pearls is carefully investigated using synchrotron radiation μ-X-ray fluorescence imaging. A variety of trace elements such as Ti, V, Mn, Fe, Ni, Cu, Sr and Ba has been detected. Most elements are distributed evenly in these pearls, with exceptions of Mn, Fe and Ba that show oscillatory zoning in freshwater pearls, coupled with the pearl growth pattern. Mn zoning is ubiquitous in all the freshwater pearls, with different numbers, width, positions, and Mn concentrations, etc. in individual. In some pearls, the Mn zoning are cooperative with the Fe zoning. It is suggested that the oscillatory zoning in freshwater pearls is a dissipative structure, and its formation results from metabolic rate changes of the mother mollusks after pearl-mantle-inserting operation. The presence of the Mn oscillatory zoning is expected to be a key character of freshwater pearls, as no such zoning is found in seawater pearls. Seawater pearls are featured with extremely low Mn concentrations. It is thus, speculated that marine Pinctada martensii have different requirements for trace elements in the course of biomineralization in comparison with freshwater Hyriopsis cumingii, and could maintain relatively stable metabolism during pearl growth. In view that pearls and shells show highly similar crystal chemistry, it is reasonable to believe that the elemental profile in shells may also be affected by the mother mollusks' activities. So the geochemical signature of shells should be treated with caution to reconstruct environments.
  • 图  1  危地马拉绿色翡翠(“玛雅绿”)代表性样品
    Figure  1.  Representative Feicui samples from Guatemala ("Maya green")
    图  2  代表性翡翠样品的红外反射光谱
    Figure  2.  Infrared reflection spectra of representative green Feicui samples
    致谢: 本研究中样品的微区X射线荧光测试在中国科学院高能物理研究所同步辐射装置4W1B线站完成,得到陈栋梁研究员的支持和帮助,李纯老师在数据处理方面提供悉心的指导,我们在此一并表示深深地谢意。
  • 图  1   6颗珍珠样品

    Figure  1.   Six pearl samples

    图  2   淡水无核珍珠样品A21283横截面的显微照片(a)以及Mn(b),Fe(c) 和Ba(d)的浓度分布呈环带图像

    注:黑色矩形框显示μ-X射线荧光成像区域,白色虚线指示植入的外套膜小片

    Figure  2.   Micrograph of the cross section (a) and oscillatory zoning of Mn (b), Fe (c) and Ba (d) of freshwater non-nucleated pearl sample A21283

    图  3   淡水无核珍珠A24001横截面的显微照片(a)以及Mn的浓度分布呈环带图像(b)

    注:黑色矩形框显示μ-X射线荧光成像区域

    Figure  3.   Micrograph of the cross section (a) and oscillatory zoning of Mn (b) of freshwater non-nucleated pearl sample A24001

    图  4   Akoya珍珠样品A21282横截面的显微照片(a) 以及Mn在珍珠层边缘呈条带状富集,与珍珠层的生长轨迹耦合(b)

    注:黑色矩形框显示μ-X射线荧光成像区域

    Figure  4.   Micrograph of the cross section (a) and Mn concentrates at the margin of the nacre, coupled with the growth pattern of the pearl (b) of Akoya pearl sample A21282

    图  5   Akoya珍珠样品A21614横截面的显微照片(a)以及Mn(b)和Fe(c)的浓度呈环带分布,二者协同变化

    注:黑色矩形框显示μ-X射线荧光成像区域

    Figure  5.   Micrograph of the cross section (a) and oscillatory zoning of Mn (b), coupled with that of Fe (c) of Akoya pearl sample A21614 that changes synergistically

    图  6   “爱迪生”珍珠样品A21284E横截面的显微照片(a)以及Mn(b)和Fe(c)的浓度呈环带分布,Mn环带与Fe环带协同变化

    注:黑色矩形框显示μ-X射线荧光成像区域

    Figure  6.   Micrograph of the cross section (a) and oscillatory zoning of Mn (b), coupled with that of Fe (c) of Edison pearl sample A21284E that changes synergistically

    图  7   海水珍珠样品A21614S横截面的显微照片(a)以及Mn(b)和Fe(c)的浓度分布

    注:黑色矩形框显示μ-X射线荧光成像区域

    Figure  7.   Micrograph of the cross section (a) and distribution of Mn (b) and Fe (c) of seawater pearl sample A21614S

  • [1]

    Olsen L F, Degn H. Chaos in an enzyme reaction[J]. Nature, 1977(267): 177-178.

    [2]

    Danù S, Sùrensen P G, Hynne F. Sustained oscillations in living cells[J]. Nature, 1999(402): 320-320.

    [3]

    Cao Y X L, Lopatkin A, You L C. Elements of biological oscillations in time and space[J]. Nature Structural & Molecular Biology, 2016, 23(12): 1 030-1 034.

    [4]

    Lazareth C E, Putten E V, André L, et al. High-resolution trace element profiles in shells of the mangrove bivalve isognomon ephippium: A record of environmental spatio-temporal variations?[J]. Estuarine Coastal & Shelf Science, 2003, 57(5-6), 1 103-1 114.

    [5]

    Etayo-Cadavid M F, Andrus C F T, Jones K B, et al. Subseasonal variations in marine reservoir age from pre-bomb Donax obesulus and Protothaca asperrima shell carbonate[J]. Chemical Geology, 2019(529): 110-116.

    [6]

    Sarimin A S, Che A. Elements content in otolith as pollution indicator for cultured sea bass (lates calcarifer) of malaysia[J]. Journal of Environmental Protection, 2012, 3(12): 1 689-1 703. doi: 10.4236/jep.2012.312184

    [7] 李立平, 张军利. 鲍贝壳的宝石学特征及其晕彩成因分析[J]. 宝石和宝石学杂志(中英文), 2001, 3(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200102000.htm

    Li L P, Zhang J L. Gemmology of Abalone shell and analysis on the origin of its iridescence[J]. Journal of Gems & Gemmology, 2012, 3(12): 1 689-1 703. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200102000.htm

    [8] 唐利妹, 张刚生. 鲍壳珍珠层的彩虹色呈色机理探究[J]. 宝石和宝石学杂志(中英文), 2015, 17(5): 18-23. doi: 10.3969/j.issn.1008-214X.2015.05.003

    Tang L M, Zhang G S. Origin of nacre's iridescence in Abalone shell[J]. Journal of Gems & Gemmology, 2015, 17(5): 18-23. (in Chinese) doi: 10.3969/j.issn.1008-214X.2015.05.003

    [9] 罗琴凤, 亓利剑, 尹作为. 池蝶蚌贝壳及其珍珠的微结构表征[J]. 宝石和宝石学杂志(中英文), 2008, 10(2): 17-20. doi: 10.3969/j.issn.1008-214X.2008.02.005

    Luo F Q, Qi L J, Yin Z W. Microstructure of Hyriopsis Schlegeli shells and its pearls[J]. Journal of Gems & Gemmology, 2008, 10(2): 17-20. (in Chinese) doi: 10.3969/j.issn.1008-214X.2008.02.005

    [10] 杨明月, 郭守国, 史凌云, 等. 淡水养殖珍珠的化学成分与呈色机理研究[J]. 宝石和宝石学杂志(中英文), 2004, 6(2): 10-13. doi: 10.3969/j.issn.1008-214X.2004.02.004

    Yang M Y, Guo S G, Shi L Y, et al. Study on compositions and colouring mechanism of freshwater cultured pearls[J]. Journal of Gems & Gemmology, 2004, 6(2): 10-13. (in Chinese) doi: 10.3969/j.issn.1008-214X.2004.02.004

    [11]

    Markich S J, Jeffree R A, Burke P T. Freshwater bivalve shells as archival indicators of metal pollution from a copper-uranium mine in tropical northern Australia[J]. Environmental Science & Technology, 2002, 36(5): 821-832.

    [12]

    Langlet D, Alleman L Y, Plisnier P -D, et al. Manganese content records seasonal upwelling in Lake Tanganyika mussels[J]. Biogeosciences, 2007(4): 95-203.

    [13]

    Zhang E, Huang F Q, Wang Z T, et al. Characteristics of trace elements in freshwater and seawater cultivated pearls[J]. Spectroscopy and Spectral Analysis, 2014(34): 2 544-2 547.

    [14]

    Sakakura I, Tsuchida H, Sasaki Y, et al. Comparison of trace elements in freshwater pearls cultivated in Japan, China, and USA[J]. International Journal of PIXE, 2021(29): 1 950 018.

    [15]

    Santana P, Aranda D A. Nacre morphology and chemical composition in Atlantic winged oyster Pteria colymbus (Röding, 1798)[J]. PeerJ, 2021(9): e11 527.

    [16] 余炼钢, 杨明星. 蚌壳珍珠层的特殊生长形态和成因探讨-以湖北鄂州梁子湖淡水三角帆蚌为例[J]. 宝石和宝石学杂志(中英文), 2006, 8(2): 25-29. doi: 10.3969/j.issn.1008-214X.2006.02.007

    Yu L G, Yang M X. Special growth morphology and genesis of nacreous layer of Hyriopsis Cumingi from E'zhou, Hubei Province[J]. Journal of Gems & Gemmology, 2006, 8(2): 25-29. (in Chinese) doi: 10.3969/j.issn.1008-214X.2006.02.007

    [17]

    Putten E V, Dehairs F, Keppens E, et al. High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: Environmental and biological controls[J]. Geochimica Et Cosmochimica Acta, 2000, 64(6): 997-1 011. doi: 10.1016/S0016-7037(99)00380-4

    [18]

    Carroll M, Romanek C S. Shell layer variation in trace element concentration for the freshwater bivalve Elliptio complanata[J]. Geo-Marine Letters, 2008(28): 369-381.

    [19]

    Fietzke J, Heinemann A, Foster L, et al. Influence of nacre precipitation on the chemical composition of prismatic shell layers in Mytilus edulis[J]. Goldschmidt Conference Abstracts, 2009: A374.

    [20]

    Leppänen J J, Saarinen T, Jilbert T, et al. The analysis of freshwater pearl mussel shells using μ-XRF (micro-X-ray fluorescence) and the applicability for environmental reconstruction[J]. SN Applied Sciences, 2021(3): 1.

    [21] 张晋丽, 黄圣轩, 唐宾, 等. 日本马氏贝珍珠化学组成的同步辐射X射线荧光光谱分析[J]. 岩石矿物学杂志, 2016, 35(4): 729-734. doi: 10.3969/j.issn.1000-6524.2016.04.013

    Zhang J L, Huang S X, Tang B, et al. Chemical composition analysis of Pinctada martensii pearls from Japan by synchrotron radiation micro X-ray fluorescence[J]. Acta Petrologica et Mineralogica, 2016, 35(4): 729-734. (in Chinese) doi: 10.3969/j.issn.1000-6524.2016.04.013

    [22] 张晋丽, 黄圣轩, 唐宾, 等. 基于同步辐射X射线荧光光谱研究日本马氏贝珍珠中Zn与Hg的元素相关性[J]. 岩石矿物学杂志, 2016, 35(S1): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW2016S1015.htm

    Zhang J L, Huang S X, Tang B, et al. Correlation of Zn and Hg in pearls from Japanese Pinctada martensii based on synchrotron radiation micro X-ray fluorescence[J]. Acta Petrologica et Mineralogica, 2016, 35(S1): 91-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW2016S1015.htm

    [23] 代会茹, 苏隽, 房杰生, 等. "爱迪生"淡水有核珍珠的鉴定特征[J]. 宝石和宝石学杂志(中英文), 2016, 18(3): 18-23. http://jogg.cug.edu.cn/cn/article/id/68730463-7139-4d8d-bc49-4a533c896ab8

    Dai H R, Su J, Fang J S, et al. Identification characteristic of freshwater cultured nucleated "Edison" pearl[J]. Journal of Gems & Gemmology, 2016, 18(3): 18-23. (in Chinese) http://jogg.cug.edu.cn/cn/article/id/68730463-7139-4d8d-bc49-4a533c896ab8

    [24]

    Solé V A, Papillon E, Cotte M, et al. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007(62): 63-68.

    [25] 木士春, 马红艳. 养殖珍珠微量元素特征及其对珍珠生长环境的指示意义[J]. 矿物学报, 2001, 21(3): 551-553. doi: 10.3321/j.issn:1000-4734.2001.03.069

    Mu S C, Ma H Y. Trace element characteristics of cultured pearls and their indicating meaning for growth environment of pearls[J]. Acta Mineralogica Sinica, 2001, 21(3): 551-553. (in Chinese) doi: 10.3321/j.issn:1000-4734.2001.03.069

    [26]

    Gaetani G A, Cohen A L. Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies[J]. Geochimica Et Cosmochimica Acta, 2006(70): 4 617-4 634.

图(7)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  126
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-04
  • 刊出日期:  2023-01-30

目录

    /

    返回文章
    返回