First-Principle Calculation and Micro-FTIR Analysis of Structural Water in Andalusite
-
摘要: 红柱石中的结构水对红柱石的密度、成分和弹性等物理化学性质有着重要影响。为探讨红柱石中含氢缺陷的结合机制以及结构水吸收峰的归属问题,本文用显微红外光谱(Micro-FTIR)分析和第一性原理计算,从晶体化学及结构缺陷性质的角度出发研究了红柱石中氢的结合机制,同时分析含氢缺陷的光谱。Micro-FTIR结果表明红柱石的主要吸收峰位于3 749、3 674、3 659、3 609、3 599、3 525、3 517、3 450 cm-1和3 444 cm-1处。通过对缺陷形成能和能带的模拟计算发现,(4H)Si复合缺陷模型比(AlH)Si和(3H)Al复合缺陷模型形成能更低,结构更稳定,(4H)Si复合缺陷是红柱石中氢结合机制的优选模式。第一性原理计算得到红柱石含氢缺陷拉曼光谱,其峰值与本次红外光谱实验结果基本一致。对比红外光谱测试结果发现,(4H)Si含氢缺陷几乎出现在所有的样品颗粒中,表明这一结合机制稳定性更好。红外光谱分析和第一性原理计算对结构羟基的归属进行指认,为矿物的实验研究提供理论依据,并为研究其他矿物的谱学归属问题提供了一种新思路。Abstract: The structural water of andalusite critically influences the physical and chemical properties, such as the density, composition and elasticity of andalusite. In this study, micro Fourier transform infrared spectroscopy (Micro-FTIR) analysis and first-principle calculation are conducted to investigate the bonding mechanism and the spectra of defects models in andalusite. Micro-FTIR results show that the main absorption peaks of andalusite are3 749, 3 674, 3 659, 3 609, 3 599, 3 525, 3 517, 3 450 cm-1 and 3 444 cm-1. The calculation results indicate that the formation energy of (4H)Si defect model is lower than that of (AlH)Si and (3H)Al defect models. Moreover, the (4H)Si complex defect is a preferential model in andalusite. Raman spectra of hydrogen defects in andalusite were calculated by the first principles, and it is basically consistent with the results of the infrared spectrum experiment. By comparing the results of infrared spectroscopy, it was found that (4H)Si hydrogen defect almost appeared in all particles, indicating that this bonding mechanism is more stable. The attribution of structural hydroxyl groups by infrared spectrum analysis and first-principle calculation provides a theoretical basis for the experimental study of minerals and a new idea for the study of spectral attribution of other minerals.
-
Keywords:
- andalusite /
- structural water /
- first-principle calculation /
- micro-FTIR
-
-
表 1 理想情况、(4H)Si、(AlH)Si和(3H)Al含氢缺陷的红柱石分别对应的超晶胞能量、复合缺陷形成能及能带
Table 1 Total energy, vacancy formation energy, band gap of perfect model, (4H)Si, (AlH)Si and (3H)Al hydrogen complex defects models of andalusite
Model E/eV δE/eV Band Gap/eV perfect -9 565.66 — 5.18 (4H)Si -9 518.96 -4.90 5.03 (AlH)Si -9 532.99 -2.93 4.87 (3H)Al -9 550.43 -0.77 4.75 -
[1] Bell D R, Rossman G R. Water in Earth's mantle: The role of nominally anhydrous minerals[J]. Science, 1992(255): 1 391-1 397.
[2] Wilkins R W T, Sabine W. Water content of some nominally anhydrous silicates[J]. American Mineralogist, 1973(58): 508-516.
[3] Beran A, Götzinger M A. The quantitative IR spectroscopic determination of structural OH groups in kyanites[J]. Mineralogy and Petrology, 1987, 36(1): 41-49. doi: 10.1007/BF01164368
[4] Rossman G R. Vibrational spectroscopy of hydrous components. In: Hawthorne F C, ed., Spectroscopic Methods in Mineralogy[J]. Reviews in Mineralogy, 1988(18): 193-206.
[5] Schmidt M W, Finger L W, Angel R J, et al. Synthesis, crystal structure, and phaserelations of AlSiO3OH, a high-pressure hydrous phase[J]. American Mineralogist, 1998, 83(7/8): 881-888.
[6] Padlewski S, Heine V, Price G D. The energetics of interaction between oxygen vacancies in sillimanite: A model for the mullite structure[J]. Physics and Chemistry of Minerals, 1992, 19(3): 196-202.
[7] Wieczorek A, Libowitzky E, Beran A. A model for the OH defect incorporation in kyanite based on polarized IR spectroscopic investigations[J]. Schweizerische Mineralogische und Petrographische Mitteilungen, 2004(84): 333-343.
[8] Burt J B, Ross N L, Gibbs G V, et al. Potential protonation sites in the Al2SiO5 polymorphs based on polarized FTIR spectroscopy and properties of the electron density distribution[J]. Physics and Chemistry of Minerals, 2007(34): 295-306.
[9] Taran M N, Koch-Muller M. FTIR spectroscopic study of natural andalusite showing electronic Fe-Ti charge-transfer processes: Zoning and thermal evolution of OH-vibration bands[J]. Physics and Chemistry of Minerals, 2013, 40(1), 63-71. doi: 10.1007/s00269-012-0547-3
[10] Schmalzried H. Chemical kinetics of solids[M]. Weinheim: John wiley & Sons, Ltd., 1995: 364-365.
[11] Johnson E A. Water in nominally anhydrous crustal minerals: Speciation, concentration, and geologic signficance[J]. Reviews in Mineralogy and Geochemistry, 2006(62): 117-154.
[12] Berran A, Zemann J. Messung des ultrarot-pleochroismus von Mineralen Ⅷ. Der pleochroismus der OH-streckfrequenz in and alusit[J]. Tschermaks Mineralogische Und Petrographische Mitteilungen, 1969(13): 285-292. doi: 10.1007/BF01081565
[13] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138. doi: 10.1103/PhysRev.140.A1133
[14] Hohenberg P, Kohn W. Inhomogneous electron gas[J]. Physical Review, 1964(136): B864-B871.
[15] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids and surfaces: Application of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992, 46(11): 6 671. doi: 10.1103/PhysRevB.46.6671
[16] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5 188. doi: 10.1103/PhysRevB.13.5188
[17] Burt J B, Ross N L, Angel R J, et al. Equations of state and structures of andalusite to 9.8 GPa and sillimanite to 8.5 GPa[J]. American Mineralogist, 2006(91): 319-326.
[18] Libowitzky E. Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals[J]. Monatshefte Für Chemie, 1999(130): 1 047-1 059.
[19] Beran A, Rossman G R, Grew E S. The hydrous component of sillimanite[J]. American Mineralogist, 1989(74): 812-817.
[20] Gibbs G V, Boisen M B, Beverley L L, et al. A computational quantum chemical study of the bonded interactions in earth materials and structurally and chemically related molecules[J]. Reviews in Mineralogy & Geochemistry, 2001, 42(1): 345-381.