树脂化石复杂化学成分解析的前处理方法研究进展

李妍, 苏小朋, 李星枰, 冯逸蕾, 李佳蓉, 王雅玫

李妍, 苏小朋, 李星枰, 冯逸蕾, 李佳蓉, 王雅玫. 树脂化石复杂化学成分解析的前处理方法研究进展[J]. 宝石和宝石学杂志(中英文), 2022, 24(5): 69-83. DOI: 10.15964/j.cnki.027jgg.2022.05.006
引用本文: 李妍, 苏小朋, 李星枰, 冯逸蕾, 李佳蓉, 王雅玫. 树脂化石复杂化学成分解析的前处理方法研究进展[J]. 宝石和宝石学杂志(中英文), 2022, 24(5): 69-83. DOI: 10.15964/j.cnki.027jgg.2022.05.006
LI Yan, SU Xiaopeng, LI Xingping, FENG Yilei, LI Jiarong, WANG Yamei. A Review on Pretreatment Method for the Analysis of Complex Chemical Composition of Resinite[J]. Journal of Gems & Gemmology, 2022, 24(5): 69-83. DOI: 10.15964/j.cnki.027jgg.2022.05.006
Citation: LI Yan, SU Xiaopeng, LI Xingping, FENG Yilei, LI Jiarong, WANG Yamei. A Review on Pretreatment Method for the Analysis of Complex Chemical Composition of Resinite[J]. Journal of Gems & Gemmology, 2022, 24(5): 69-83. DOI: 10.15964/j.cnki.027jgg.2022.05.006

树脂化石复杂化学成分解析的前处理方法研究进展

基金项目: 

湖北省哲学社会科学计划项目: 丝绸之路上中西方珠宝玉器的互动关系及数据库建设—以汉代海昏侯墓为例 21G007

国家重点研发计划项目 2018YFF0215400

珠宝检测技术创新中心项目 CIGTXM-03-202104

详细信息
    作者简介:

    李妍(1987-),女,特任教授,主要从事宝石及材料工艺学研究。E-mail: yanli@cug.edu.cn

    通讯作者:

    王雅玫(1962-),女,副教授,主要从事珠宝教育、珠宝检测及科研工作。E-mail: wangym@cug.edu.cn

  • 中图分类号: TS93

A Review on Pretreatment Method for the Analysis of Complex Chemical Composition of Resinite

  • 摘要: 树脂化石复杂有机组分的分离检测及解析一直是树脂化石研究中的热点和难点,早期前处理方法和一维气相色谱-质谱的分离分析效率有限,挥发性组分数据易丢失,峰重叠现象严重,很难对其化学组成进行准确鉴定。本文对比分析了4种前处理方法(溶剂萃取、化学衍生化、热裂解和固相微萃取)在树脂化石前处理中的适用范围和优缺点。(1)溶剂萃取法适用于分析树脂化石中倍半萜类、三萜类、酚类、饱和烃、芳烃等物质,但石化程度高的琥珀所需溶解时间长且不能完全溶解,不适用此方法,石化程度低的柯巴树脂更适用于此方法。(2)化学衍生化法适用于定性分析基团中有活泼氢的分子,衍生化后可有效改善相关分子的挥发性、稳定性和增强响应信号强度。(3)热裂解法主要针对树脂化石有机聚合物的主要骨架,但是以裂解碎片还原初始结构会存在一定偏差。(4)固相微萃取法适用于树脂化石中的挥发份/半挥发份的分析,但易出现检出物不完全的情况。结合顶空高容量固相萃取法和直接热脱附法样品前处理技术和全二维气相色谱-质谱技术,可检测到传统分析方法3~4倍的化合物种类数量, 并通过非靶向代谢组学策略分析不同产地树脂化石色谱质谱结果,可筛查出更具代表性的特征化学信息,研究复杂有机组分的分离、同分异构物的准确判别,解决固相复杂有机组分检测解析的突出难题,在挥发性-半挥发性有机组分分离及二次富集、高特异性生物标志物筛选方面高效解析,为树脂化石在其古生态环境复原及成熟演化过程探究奠定理论和技术基础。
    Abstract: The separation, detection, and analysis of complex organic compositions in fossil resin have always been a hot and difficult point in the research. The early sample pretreatment methods and the separation and analysis efficiency of one-dimensional gas chromatography-mass spectrometry (1D GC-MS) were limited, overlapping spectral peaks and missing mass spectra peaks of trace substances easily occurred in the chromatography-mass spectrometry analysis, .Hence, it was difficult to accurately identify its chemical compositions. In this review, it systematically summarizes the application, advantages, and disadvantages of four pretreatment methods (solvent extraction, chemical derivatization, pyrolysis, and solid phase microextraction) used in the compositions analysis of resinites. (1)Solvent extraction is suitable for the analysis of sesquiterpenes, triterpenes, phenols, saturated hydrocarbons, aromatic hydrocarbons, and other substances in the resin fossils. However, amber with high degree of petrifaction requires a long time to dissolve and cannot be completely dissolved, hence, solvent extraction is much more applicable to copal with lower degree rather than highly fossilized amber. (2)Chemical derivatization is applicable to qualitative analysis of molecules with active hydrogen in the group, which can effectively improve the volatility and stability of related molecules and enhance the response signal intensity after derivatization. (3)Thermal pyrolysis mainly aims at the analysis of the main macromolecular skeleton of the resinite, but there will be some deviation in the reduction of the initial structure by the pyrolysates. (4)Solid phase microextraction is suitable for the analysis of volatile/semi-volatile components in amber, but it is prone to incomplete detection. The sample pretreatment technologies of headspace high-capacity solid phase microextraction and direct thermal desorption combining with comprehensive two-dimensional gas chromatography and mass spectrometry (GC-MS) were creatively proposed, which could detect 3-4 times as many compounds number as the traditional analysis method. More representative biomarkers can be screened by untargeted metabolomics strategies to analyze the GC-MS results of resinites from different habitats. Our team will focus on the isolation of complex organic components and the accurate identification of isomers, and reveal the origin of ancient plants and genesis of resin fossils of different origins and ages. It is expected to solve the outstanding problems in the detection and analysis of complex organic components in the solid phase, and efficiently analyze volatile and semi volatile organic compounds in terms of separation, secondary enrichment, and screening of highly specific biomarkers, which provides a theoretical and technical foundation for the exploration of reconstruction of their palaeoecological environment and maturation evolution.
  • 图  1  内蒙古角力格泰地区碧玺样品
    Figure  1.  Tourmaline samples from Jiaoligetai area, Inner Mongolia
  • 图  1   Ⅰ型树脂化石的基本结构及其单体结构示意图[9]

    Figure  1.   The basic structure of ClassⅠ resinites and its monomeric structure

    图  2   树脂化石化学分析流程和常见的前处理方法

    Figure  2.   The chemical analytical workflow and common pretreatment methods for resinites

    图  3   样品制备与组分分离的基础步骤

    Figure  3.   Basic steps in sample preparation and component separation

    图  4   缅甸琥珀(a)和多米尼加琥珀(b)的高效液相色谱-紫外检测结果

    Figure  4.   HPLC chromatograms of amber from Myanmar (a) and amber from Dominican Republic (b)

    图  5   化学衍生化法分离组分的步骤

    Figure  5.   Steps for the separation of components by chemical derivatization

    图  6   相对于TMAH甲基化反应,HMDS硅烷化反应具有更高的灵敏度和最佳峰值分辨率[21]

    Figure  6.   The higher sensitivity and a best resolution of peaks achieved from the derivatization with HMDS, compared to the TMAH methylation reaction

    图  7   热裂解-气相色谱-质谱原理图

    Figure  7.   Schematic diagram of Py-GC-MS

    图  8   缅甸金珀在420 ℃和520 ℃裂解温度时的热裂解-气相色谱-质谱图

    Figure  8.   Py-GC-MS of golden amber from Myanmar at pyrolysis temperatures of 420 ℃ and 520 ℃

    图  9   顶空固相微萃取原理示意图

    Figure  9.   The schematic diagram of HS-SPME

    图  10   基于固相微萃取技术的琥珀挥发性有机物/半挥发性有机物成分检测

    Figure  10.   Detection of amber volatile organic compounds/semi volatile organic compounds based on solid phase microextraction technology

    图  11   顶空高容量固相萃取对于高沸点,半挥发性化合物的灵敏度更好

    Figure  11.   Headspace high volume solid phase extraction is more sensitive to high boiling point and semi volatile compounds

    表  1   前处理方法文献总结

    Table  1   Summary of literatures on resinites pretreatment methods

    下载: 导出CSV

    表  2   琥珀与不同溶剂(含化学式)的反应时间和效果[41]

    Table  2   Chemical reaction of the amber to different solvents, their chemical formula, and the duration of the reaction[9]

    溶剂 化学式 时间 效果
    Acetone C3H6O 在丙酮中浸泡了几天后,琥珀仅有表面受到了影响,琥珀样品变得很脆且碎
    Dichlormethane CH2Cl2 ~1 h 琥珀在二氯甲烷中快速溶解了,但溶剂对包裹体是否有影响还未进行检测
    Trichlormethane CHCl3 ~0.5 h 琥珀快速地褪色并且溶解,并且琥珀内部的包裹体脱水
    Dimethylformamide HCO-N(CH3)2 琥珀样品仅漂浮在溶剂表面,几周后都没有变化
    Formaldehyde CH2O 琥珀样品仅漂浮在溶剂表面,几周后都没有变化
    Petroleum ether CnH2n+2(n=5~8) 石油醚具有多个闪点,使琥珀具有弹性且变得不透明; 此外,石油醚还浸渍了样品, 琥珀开始产生线状条纹; 几个小时后,浸泡在石油醚中的琥珀变成了泥土状、粘稠的混合物
    Turpentine oil predominantly C10H16 (α-Pinen) ~2 d 溶解琥珀的时间最长,但溶解的效果很好; 溶剂对包裹体是否有影响还未进行检测
    Orange oil predominantly C10H16 (d-limonene) 3~4 h 溶解琥珀的能力很强,至今为止没有发现橙油会损坏包裹体
    Toluene C6H5CH3 ~1 h 溶解琥珀的能力很强,与少量的乙醇混合时效果最好;包裹体残留在溶剂中时会脱水
    Xylene C6H4(CH3)2 ~1 h 比甲苯溶解琥珀的效果更强; 溶剂对包裹体是否有影响还未进行检测
    下载: 导出CSV
  • [1]

    Daher C, Pimenta V, Bellot-Gurlet L. Towards a non-invasive quantitative analysis of the organic components in museum objects varnishes by vibrational spectroscopies: Methodological approach[J]. Talanta, 2014(129): 336-345.

    [2]

    Sutton P A, Lewis C A, Rowland S J. Isolation of individual hydrocarbons from the unresolved complex hydrocarbon mixture of a biodegraded crude oil using preparative capillary gas chromatography[J]. Organic Geochemistry, 2005, 36(6): 963-970. doi: 10.1016/j.orggeochem.2004.11.007

    [3]

    Arismendi G G, Tappert R, McKellar R C, et al. Deuterium exchange ability in modern and fossil plant resins[J]. Geochimica et Cosmochimica Acta, 2018(239): 159-172.

    [4]

    Dal Corso J, Schmidt A R, Seyfullah L J, et al. Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins[J]. Geochimica et Cosmochimica Acta, 2017(199): 351-369.

    [5]

    Dutta S, Mehrotra R C, Paul S, et al. Remarkable preservation of terpenoids and record of volatile signalling in plant-animal interactions from Miocene amber[J]. Scientific Reports, 2017(7): 1-6.

    [6]

    Seyfullah L J, Beimforde C, Dal Corso J, et al. Production and preservation of resins-past and present[J]. Biological Reviews, 2018, 93(3): 1 684-1 714. doi: 10.1111/brv.12414

    [7]

    Jiang X R, Zhang Z Q, Wang Y M, et al. Gemmological and spectroscopic characteristics of different varieties of amber from the hukawng valley, Myanmar[J]. Journal of Gemmology, 2020, 37(2): 144-162. doi: 10.15506/JoG.2020.37.2.144

    [8]

    Otto A, Simoneit B R T, Wilde V. Terpenoids as chemosystematic markers in selected fossil and extant species of pine (Pinus, Pinaceae)[J]. Botanical Journal of the Linnean Society, 2007, 154(1): 129-140. doi: 10.1111/j.1095-8339.2007.00638.x

    [9]

    Anderson K B, Winans R E, Botto R E. The nature and fate of natural resins in the geosphere--Ⅱ. Identification, classification and nomenclature of resinites[J]. Organic Geochemistry, 1992, 18(6): 829-841. doi: 10.1016/0146-6380(92)90051-X

    [10]

    Pereira R, Carvalho I D, Simoneit B R T, et al. Molecular composition and chemosystematic aspects of Cretaceous amber from the Amazonas, Araripe and Reconcavo basins, Brazil[J]. Organic Geochemistry, 2009, 40(8): 863-875. doi: 10.1016/j.orggeochem.2009.05.002

    [11]

    Chekryzhov I Y, Nechaev V P, Kononov V V. Blue-fluorescing amber from Cenozoic lignite, eastern Sikhote-Alin, Far East Russia: Preliminary results[J]. International Journal of Coal Geology, 2014(132): 6-12.

    [12]

    Anderson K B. Investigation of C-ring aromatic diterpenoids in Raitan amber by pyrolysis-GC-matrix-isolation FTIR-MS[J]. Geochemical Transactions, 2006, 7(2): 1-9.

    [13] 王雅玫, 牛盼, 谢璐华. 应用稳定同位素示踪琥珀的产地[J]. 宝石和宝石学杂志(中英文), 2013, 15(3): 9-17. doi: 10.3969/j.issn.1008-214X.2013.03.002

    Wang Y M, Niu P, Xie L H. Stable isotopes tracing of origin of ambers[J]. Journal of Gems & Gemmology, 2013, 15(3): 9-17. (in Chinese) doi: 10.3969/j.issn.1008-214X.2013.03.002

    [14] 张志清, 蒋欣然, 王雅玫, 等. 不同产地常见琥珀品种的三维荧光光谱特征[J]. 宝石和宝石学杂志(中英文), 2020, 22(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202003001.htm

    Zhang Z Q, Jiang X R, Wang Y M, et al. Fluorescence spectral characteristic of amber from Baltic Sea region, Dominican Republic, Mexico, Myanmar and Fushun, China[J]. Journal of Gems & Gemmology, 2020, 22(3): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202003001.htm

    [15]

    Islas C A, Suelves I, Carter J F, et al. Structural characterisation of Baltic amber and its solvent extracts by several mass spectrometric methods[J]. Rapid Communications in Mass Spectrometry, 2001, 15(11): 845-856. doi: 10.1002/rcm.306

    [16]

    Chaler R, Grimalt J O. Fingerprinting of Cretaceous higher plant resins by infrared spectroscopy and gas chromatography coupled to mass spectrometry[J]. Phytochemical Analysis, 2005, 16(6): 446-450. doi: 10.1002/pca.868

    [17]

    Menor-Salvan C, Najarro M, Velasco F, et al. Terpenoids in extracts of Lower Cretaceous ambers from the Basque-Cantabrian Basin (El Soplao, Cantabria, Spain): Paleochemotaxonomic aspects[J]. Organic Geochemistry, 2010, 41(10): 1 089-1 103. doi: 10.1016/j.orggeochem.2010.06.013

    [18]

    Mallick M, Dutta S, Greenwood P F. Molecular characterization of fossil and extant dammar resin extracts: Insights into diagenetic fate of sesqui-and triterpenoids[J]. International Journal of Coal Geology, 2014(121): 129-136.

    [19]

    Bechtel A, Chekryzhov I Y, Nechaev V P, et al. Hydrocarbon composition of Russian amber from the Voznovo lignite deposit and Sakhalin Island[J]. International Journal of Coal Geology, 2016(167): 176-183.

    [20]

    Wang Y M, Jiang W Q, Feng Q, et al. Identification of 15-nor-cleroda-3, 12-diene in a Dominican amber[J]. Organic Geochemistry, 2017(113): 90-96.

    [21]

    Osete-Cortina L, Domenech-Carbo M T. Analytical characterization of diterpenoid resins present in pictorial varnishes using pyrolysis-gas chromatography-mass spectrometry with on line trimethylsilylation[J]. Journal of Chromatography A, 2005, 1065(2): 265-278. doi: 10.1016/j.chroma.2004.12.078

    [22]

    Colombini M P, Ribechini E, Rocchi M, et al. Analytical pyrolysis with in-situ silylation, Py (HMDS)-GC/MS, for the chemical characterization of archaeological and historical amber objects[J]. Heritage Science, 2013, 1(1): 1-10. doi: 10.1186/2050-7445-1-1

    [23]

    Sonibare O O, Huang R J, Jacob D E, et al. Terpenoid composition and chemotaxonomic aspects of Miocene amber from the Koroglu Mountains, Turkey[J]. Journal of Analytical and Applied Pyrolysis, 2014(105): 100-107.

    [24]

    Poulin J, Helwig K. Class Id resinite from Canada: A new sub-class containing succinic acid[J]. Organic Geochemistry, 2012(44): 37-44.

    [25]

    Poulin J, Helwig K. Inside amber: The structural role of succinic acid in class Ia and class Id resinite[J]. Analytical Chemistry, 2014, 86(15): 7 428-7 435. doi: 10.1021/ac501073k

    [26]

    Poulin J, Helwig K. The characterisation of amber from deposit sites in western and northern Canada[J]. Journal of Archaeological Science: Reports, 2016(7): 155-168.

    [27]

    van der Werf I D, Fico D, De Benedetto G E, et al. The molecular composition of Sicilian amber[J]. Microchemical Journal 2016(125): 85-96. doi: 10.1016/j.microc.2015.11.012

    [28]

    Decq L, Abatih E, Van Keulen H, et al. Nontargeted pattern recognition in the search for pyrolysis gas chromatography/mass spectrometry resin markers in historic lacquered objects[J]. Analytical Chemistry, 2019, 91(11): 7 131-7 138.

    [29]

    Park J S, Lim Y J. Analysis of ambers with different origin by IR and py/GC/MS[J]. Analytical Science and Technology, 2011, 24(4): 256-265.

    [30]

    Park J, Yun E, Kang H, et al. IR and py/GC/MS examination of amber relics excavated from 6th century royal tomb in Korean Peninsula[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2016(165): 114-119.

    [31]

    Fischer T C, Sonibare O O, Aschauer B, et al. Amber from the Alpine Triassic of Lunz (Carnian, Austria): A classic palaeobotanical site[J]. Palaeontology, 2017, 60(5): 743-759.

    [32]

    Deviese T, Ribechini E, Castex D, et al. A multi-analytical approach using FTIR, GC/MS and Py-GC/MS revealed early evidence of embalming practices in Roman catacombs[J]. Microchemical Journal, 2017(133): 49-59.

    [33]

    Zheng D R, Chang S C, Perrichot V, et al. A Late Cretaceous amber biota from central Myanmar[J]. Nature Communications, 2018(9): 1-6.

    [34]

    Kotulova J, Starek D, Havelcova M, et al. Amber and organic matter from the late Oligocene deep-water deposits of the Central Western Carpathians (Orava-Podhale Basin)[J]. International Journal of Coal Geology, 2019(207): 96-109.

    [35]

    Umamaheswaran R, Dutta S, Kumar S. Elucidation of the macromolecular composition of fossil biopolymers using Py-GCxGC-TOFMS[J]. Organic Geochemistry 2021(151): 104 139.

    [36]

    Pastorelli G. Identification of volatile degradation products from Baltic amber by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2011, 399(3): 1 347-1 353.

    [37]

    van der Werf I D, Aresta A, Truica G I, et al. A quasi non-destructive approach for amber geological provenance assessment based on head space solid-phase microextraction gas chromatography-mass spectrometry[J]. Talanta, 2014(119): 435-439.

    [38]

    McCoy V E, Boom A, Kraemer M M S, et al. The chemistry of American and African amber, copal, and resin from the genus Hymenaea[J]. Organic Geochemistry, 2017(113): 43-54.

    [39]

    McCoy V E, Barthel H J, Boom A, et al. Volatile and semi-volatile composition of Cretaceous amber[J]. Cretaceous Research, 2021(127): 104 958.

    [40] 陈静, 张伟, 李明明, 等. 自动索氏提取-固相萃取-气相色谱-串联质谱法测定土壤环境中5种杀螨剂的残留量[J]. 理化检验-化学分册, 2022, 58(7): 857-860.

    Chen J, Zhang W, Li M M, et al. Determination of residues of five acaricides in soil by automatic soxhlet extraction-solid phase extraction-gas chromatography-tandem mass spectrometry[J]. PTCA(PART B: Chem. Anal. ), 2022, 58(7): 857-860. (in Chinese)

    [41]

    Mazur N, Nagel M, Leppin U, et al. The extraction of fossil arthropods from Lower Eocene Cambay amber[J]. Acta Palaeontologica Polonica, 2014, 59(2): 455-459.

    [42]

    Bechtel A, Sachsenhofer R F, Gratzer R, et al. Parameters determining the carbon isotopic composition of coal and fossil wood in the Early Miocene Oberdorf lignite seam (Styrian Basin, Austria)[J]. Organic Geochemistry, 2002, 33(8): 1 001-1 024.

    [43]

    Paul S, Sharma J, Singh B D, et al. Early Eocene equatorial vegetation and depositional environment: Biomarker and palynological evidences from a lignite-bearing sequence of Cambay Basin, western India[J]. International Journal of Coal Geology, 2015(149): 77-92.

    [44] 邱若风. 在线热辅助甲基化—气相色谱/质谱法分析食品和药品中脂肪酸组成的研究[D]. 杭州: 浙江工业大学, 2018.

    Qiu R F. Study on analsis of fatty acid composition in food and drug by gas chromatography/mass spectrometry with on -line pyrolytic methylation technique[D]. Hangzhou: Zhejiang University of Technology, 2018. (in Chinese)

    [45]

    van der Werf I D, Monno A, Fico D, et al. A multi-analytical approach for the assessment of the provenience of geological amber: The collection of the Earth Sciences Museum of Bari (Italy)[J]. Environmental Science and Pollution Research, 2017, 24(3): 2 182-2 196.

    [46]

    Yamamoto S, Otto A, Krumbiegel G, et al. The natural product biomarkers in succinite, glessite and stantienite ambers from Bitterfeld, Germany[J]. Review of Palaeobotany and Palynology, 2006, 140(1-2): 27-49.

    [47]

    Colombini M P, Modugno F. Organic mass spectrometry in art and archaeology[M]. Chichester: Wiley, 2009: 327-361.

    [48]

    Fabbri D, Chiavari G, Prati S, et al. Gas chromatography/mass spectrometric characterisation of pyrolysis/silylation products of glucose and cellulose[J]. Rapid Dommunications in Mass Spectrometry, 2002, 16(24): 2 349-2 355.

    [49]

    Pastorova I, vanderBerg K J, Boon J J, et al. Analysis of oxidised diterpenoid acids using thermally assisted methylation with TMAH[J]. Journal of Analytical and Applied Pyrolysis 1997, 43(1): 41-57.

    [50]

    Lin S Y, Dence C W. Method in lignin chemistry[M]. Heidelberg: Springer Berlin, 1992: 177-199.

    [51]

    Kaal J, Seijo M M, Oliveira C, et al. Golden artefacts, resin figurines, body adhesives and tomb sediments from the pre-Columbian burial site El Cano (Gran Cocle, Panama): Tracing organic contents using molecular archaeometry[J]. Journal of Archaeological Science, 2020(113): 105 045.

    [52] 柘植新, 大谷肇, 渡边忠一. 聚合物的裂解气相色谱: 质谱图集[M]. 北京: 化学工业出版社2016.

    Tsuge S, Ohtani H, Watanabe C. Pyrolysis - GC/MS data book of synthetic polymers[M]. Beijing: Chemical Industry Publishing House, 2016. (in Chinese)

    [53] 俞嘉斌, 邹波, 魏春明, 等. 全自动在线顶空固相微萃取-气相色谱-质谱联用检测水样中24种常见农药[J/OL]. 农药学学报. https://doi.org/10.16801/j.issn.1008-7303.2022.0057.

    Yu J B, Zhou B, Wei C M, et al. Detection of 24 common pesticides in water samples by automatic online HS-SPME-GC-MS[J/OL]. Chinese Journal of Pesticide Science. https://doi.org/10.16801/j.issn.1008-7303.2022.0057. (in Chinese)

    [54] 许紫嫣. 基于多重顶空固相微萃取的浓香油脂中吡嗪类成分定量方法的建立及应用[D]. 郑州: 河南工业大学, 2021.

    Xu Z Y. The establishment and application of quantitative methods for Pyrazine in fragrant edible oil according to MHS-SPME-GC-MS[D]. Zhengzhou: Henan University of Technology, 2021. (in Chinese)

    [55]

    Shi G L, Dutta S, Paul S, et al. Terpenoid compositions and botanical origins of late Cretaceous and Miocene amber from China[J]. Plos One, 2014, 9(10): e111303.

    [56]

    Ritchie M E, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Research, 2015, 43(7): e47.

    [57]

    Beimforde C, Seyfullah L J, Perrichot V, et al. Resin exudation and resinicolous communities on Araucaria humboldtensis in New Caledonia[J]. Arthropod-Plant Interactions, 2017, 11(4): 495-505.

    [58]

    McKellar R C, Wolfe A P, Muehlenbachs K, et al. Insect outbreaks produce distinctive carbon isotope signatures in defensive resins and fossiliferous ambers[J]. Proceedings of the Royal Society B-Biological Sciences, 2011, 278(1 722): 3 219-3 224.

    [59]

    Najarro M, Peñalver E, Pérez-De La Fuente R, et al. Review of the El Soplao amber outcrop, Early Cretaceous of Cantabria, Spain[J]. Acta Geologica Sinica(English Edition), 2010, 84(4): 959-976.

  • 期刊类型引用(1)

    1. 王倩倩,郭庆丰,葛笑. 黄绿色葡萄石的矿物学特征及谱学研究. 人工晶体学报. 2022(04): 723-729 . 百度学术

    其他类型引用(1)

图(11)  /  表(2)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  90
  • PDF下载量:  33
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-09-19
  • 刊出日期:  2022-09-29

目录

    /

    返回文章
    返回