Study on the Experimental Conditions of Quantitative Analysis of Turquoise by Electron Probe
-
摘要: 绿松石是一种珍贵的玉石,在进行微区无损分析时,电子探针常用于绿松石的矿物组成及分布研究。由于自然产出的绿松石不仅含结晶水、结构水,还因孔隙发育常含不定量的吸附水,易致绿松石的电子探针定量分析结果不佳,总量偏低; 除此之外,标样和测试条件的选择对测试结果的影响也至关重要。采用岛津电子探针对绿松石进行定量分析,通过设定不同的加速电压、束流和束斑直径,分析不同测试条件对定量结果的影响,从而得出绿松石最佳的定量分析条件。结果表明:当选择加速电压15 kV、束流为10 nA或20 nA、束斑直径为1 μm时,测得的绿松石总量区间为79.95%~81.23%,接近绿松石理论总量79.88%~81.35%,测试结果最佳。本实验旨在建立一套适用于绿松石电子探针定量分析的最优测试条件,对绿松石电子探针定量分析具有一定的参考意义和应用价值。Abstract: Turquoise is a kind of precious gem. Electron probe is often used to study the mineral components and distribution of turquoise in micro-zone non-destructive analysis. Natural turquoise not only contains crystal water and structural water, but also often contains unquantified adsorption water due to the pore development. Therefore, it is easy to cause the inaccuracy of the quantitative analysis results of turquoise electron probe test, and the total amount is low. In addition, the selection of standard samples and test conditions is also very important to the test results. So far, no relevant research has been found on the influence of different test conditions on the results of quantitative analysis of turquoise electron probe test. In this paper, Shimazu electron probe (EPMA-1720) was used for quantitative analysis of turquoise. By setting different acceleration voltage, beam current and beam spot diameter, the influence of different test conditions on quantitative results was analyzed, and the optimal quantitative analysis conditions of turquoise were obtained. The results show that when the acceleration voltage is 15 kV, the beam current is 10 nA or 20 nA, and the beam spot diameter is 1 μm, and the range of total turquoise measured is 79.95%-81.23%, which is close to the theoretical total turquoise 79.88%-81.35%, and the test result is the best. This experiment aims to establish a set of optimal test conditions suitable for quantitative analysis of turquoise electron probe test, which has certain reference significance and application value.
-
Keywords:
- turquoise /
- electron probe /
- quantitative analysis /
- optimal test condition
-
-
表 1 待测元素的线系和晶体选择
Table 1 Line series and crystal selection of elements to be measured
待测元素 特征X射线线系 测定晶体 测试通道 Na、Al Ka RAP CH1 P、S、K、Ca Ka PET CH3 Fe、Cu、Zn Ka LiF CH4 Ba La LiF CH4 表 2 待测元素选用的标样及其组成
Table 2 Selected standard samples and composition of elements to be tested
待测元素 标样名称 标样主量元素及含量 Na Albite NaO[11.590%],Al2O3[19.540%],SiO2[68.520%] Al Garnet Al2O3[42.950%],Y2O3[57.060%] P Apatite P2O5[41.390%],CaO[53.970%],SiO2[0.470%],SO3[0.490%] S Sphalerite S[32.910%],Zn[67.070%] K Orthoclase K2O[15.960%],Na2O[0.470%],Al2O3[16.880%],SiO2[64.670%] Ca Diopside CaO[25.730%],MgO[18.620%],SiO2[55.370%] Fe Pyrope Garnet FeO[11.150%],MgO[19.330%],Al2O3[21.320%],SiO2[41.450%] Cu Cuprite CuO[88.820%],O[11.180%] Zn Sphalerite Zn[67.070%],S[32.910%] Ba Barite BaO[65.830%],SO3[34.070%] 表 3 电子探针定量分析条件选择的一般原则
Table 3 General principles of quantitative conditions selection for EPMA analysis
元素序号/Z 加速电压/kV 电子束流/nA 电子束斑/μm 4~9 5~10 50~100 10~30 10~30 15~20 10~20 5~10 ≥31 20~25 5~10 1~3 表 4 湖北云盖寺绿松石样品LSSH在不同束斑直径下所测得的电子探针数据
Table 4 Data of turquoise sample LSSH from Yungai Temple in Hubei Province under different beam spot diameters by EPMA
wB/% 测试条件 Al2O3 P2O5 CuO Na2O SO3 BaO K2O FeOT CaO ZnO total 第一组 测量值 36.72 34.29 6.87 0.05 0.68 0.06 0.10 1.06 0.01 0.55 80.39 15 kV-20 nA-1 μm 37.06 34.39 7.08 0.07 0.60 0.09 0.10 1.03 0 0.55 80.98 36.38 35.06 6.97 0.07 0.60 0.19 0.09 1.01 0 0.44 80.82 36.66 34.94 7.16 0.08 0.62 0.05 0.11 1.10 0.01 0.40 81.13 36.88 34.86 6.96 0.07 0.62 0.09 0.08 0.94 0 0.49 81.00 平均值 36.74 34.71 7.01 0.07 0.62 0.10 0.10 1.03 0 0.49 80.86 第二组 测量值 37.40 34.86 6.76 0.03 0.59 0.09 0.08 1.09 0.01 0.51 81.41 15 kV-20 nA-5 μm 37.51 35.66 6.91 0.05 0.46 0.06 0.09 1.05 0 0.51 82.30 37.61 34.77 6.59 0.06 0.62 0.11 0.06 1.05 0.01 0.58 81.44 37.95 35.10 6.44 0.04 0.44 0.08 0.05 0.97 0.01 0.77 81.85 37.99 35.47 7.20 0.05 0.62 0.05 0.11 1.04 0.01 0.43 82.95 平均值 37.69 35.17 6.78 0.05 0.55 0.08 0.08 1.04 0.01 0.56 81.99 第三组 测量值 38.55 35.27 7.17 0.06 0.43 0.09 0.09 0.91 0 0.43 83.00 15 kV-20 nA-10 μm 38.44 34.99 6.95 0.07 0.45 0.10 0.07 1.02 0.01 0.44 82.54 37.90 35.58 7.35 0.05 0.46 0.09 0.10 1.11 0 0.41 83.05 38.22 35.67 7.54 0.04 0.58 0.05 0.11 1.08 0.01 0.49 83.79 37.97 35.84 7.23 0.07 0.68 0.06 0.06 1.06 0 0.43 83.41 平均值 38.22 35.47 7.25 0.06 0.52 0.08 0.09 1.03 0 0.44 83.16 第四组 测量值 38.25 35.87 7.37 0.08 0.70 0.12 0.09 1.02 0.02 0.39 83.90 15 kV-20 nA-20 μm 38.91 35.10 7.25 0.06 0.63 0.08 0.08 0.98 0.01 0.38 83.47 39.09 35.73 7.40 0.06 0.65 0.08 0.10 1.01 0 0.45 84.57 38.57 35.44 7.67 0.07 0.69 0.10 0.09 1.29 0 0.42 84.34 38.73 35.67 7.35 0.07 0.61 0.09 0.07 0.93 0 0.47 83.98 平均值 38.71 35.56 7.41 0.07 0.65 0.09 0.08 1.05 0.01 0.42 84.05 注:测试条件包括加速电压-加速电流-束斑直径 表 5 湖北云盖寺绿松石样品LSSH在不同加速电压和束流强度下所测得的电子探针数据
Table 5 Data of turquoise sample LSSH from Yungai Temple in Hubei Province under different acceleration voltages and beam intensities by EPMA
wB/% 测试条件 Al2O3 P2O5 CuO Na2O SO3 BaO K2O FeOT CaO ZnO total 第一组 测量值 37.08 34.19 7.39 0.03 0.76 0.04 0.03 1.26 0 0.44 81.23 15 kV-10 nA-1 μm 37.26 34.09 7.58 0.01 0.60 0.06 0.03 1.03 0 0.47 81.12 37.01 33.48 7.19 0.05 0.58 0.11 0.03 0.98 0.02 0.50 79.95 37.60 33.98 7.20 0.05 0.58 0.06 0.05 1.17 0.01 0.40 81.08 36.97 33.90 7.11 0.04 0.69 0.12 0.04 1.16 0.01 0.43 80.47 平均值 37.18 33.93 7.29 0.03 0.64 0.08 0.04 1.12 0.01 0.45 80.77 第二组 测量值 36.72 34.29 6.87 0.05 0.68 0.06 0.10 1.06 0.01 0.55 80.39 15 kV-20 nA-1 μm 37.06 34.39 7.08 0.07 0.60 0.09 0.10 1.03 0 0.55 80.98 36.38 35.06 6.97 0.07 0.60 0.19 0.09 1.01 0 0.44 80.82 36.66 34.94 7.16 0.08 0.62 0.05 0.11 1.10 0.01 0.40 81.13 36.88 34.86 6.96 0.07 0.62 0.09 0.08 0.94 0 0.49 81.00 平均值 36.74 34.71 7.01 0.07 0.62 0.10 0.10 1.03 0 0.49 80.86 第三组 测量值 37.99 35.47 7.20 0.03 0.62 0 0.04 1.04 0.01 0.43 82.82 20 kV-10 nA-1 μm 38.04 34.99 6.95 0.06 0.45 0 0.05 1.02 0.01 0.44 82.00 37.72 34.90 7.66 0.04 0.57 0.04 0.04 1.10 0 0.45 82.53 38.30 34.90 7.36 0.06 0.66 0.03 0.05 1.09 0 0.44 82.87 38.38 35.16 7.23 0.02 0.72 0.06 0.04 1.17 0 0.40 83.18 平均值 38.09 35.08 7.28 0.04 0.60 0.03 0.04 1.08 0 0.43 82.68 第四组 测量值 38.08 34.82 7.65 0.09 0.62 0.10 0.09 1.06 0 0.49 83.01 20 kV-20 nA-1 μm 38.76 34.63 7.62 0.05 0.69 0.11 0.08 1.22 0 0.44 83.59 38.88 34.29 7.50 0.04 0.74 0.16 0.09 1.28 0 0.48 83.46 38.55 34.57 7.17 0.04 0.43 0.11 0.08 1.43 0 0.46 82.83 38.99 34.47 7.20 0.03 0.62 0.14 0.10 1.43 0.01 0.46 83.43 平均值 38.65 34.55 7.43 0.05 0.62 0.12 0.09 1.28 0 0.46 83.26 注:测试条件包括加速电压-加速电流-束斑直径 表 6 不同绿松石样品在15 kV-10 nA-1 μm条件下所测得的电子探针数据
Table 6 Data of different turquoise samples measured at the condition of 15 kV-10 nA-1 μm by EPMA
wB/% 样品号 Al2O3 P2O5 CμO Na2O SO3 BaO K2O FeOT CaO ZnO F SiO2 total LSS1-1 34.58 30.93 7.22 0.33 3.45 0.04 0.09 4.21 0.03 0 - - 80.88 LSS1-2 34.90 31.25 7.52 0.22 2.99 0.05 0.07 3.83 0.10 0 - - 80.91 LSS2-1 31.65 33.13 6.05 0.05 - - 0.07 9.11 - 0 - - 80.06 LSS2-2 31.68 34.67 5.59 0.02 - - 0.07 8.23 - 0 - - 80.26 LSS3-1 36.63 34.33 6.61 0.03 - - 0.08 2.38 0.28 - 0.05 0.06 80.45 LSS3-2 35.35 34.09 6.86 0.04 - - 0.09 3.45 0.11 - 0.27 0 80.25 LSS4-1 36.64 35.20 7.22 0.06 - - 0.14 1.06 0.15 - 0.13 0.13 80.74 LSS4-2 36.53 34.53 7.83 0.02 - - 0.11 1.08 0.14 - 0.14 0.05 80.44 注:“-”表示未检测该元素含量 -
[1] Foord E E, Taggart J E. A reexamination of the turquoise group: The mineral aheylite, planerite (redefined), turquoise and coeruleolactite[J]. Mineralogical Magazine, 1998, 62(1): 93-111. doi: 10.1180/002646198547495
[2] 王濮, 潘兆鲁, 翁玲宝. 系统矿物学[M]. 北京: 地质出版社, 1984: 147-149. Wang P, Pan Z L, Weng L B. Systematic mineralogy[M]. Beijing: Geological Publishing House, 1984: 147-149. (in Chinese)
[3] Schaller W T. Crystallized turquoise from Virginia[J]. American Journal of Science, 1912, s4-33(193): 35-40. doi: 10.2475/ajs.s4-33.193.35
[4] 栾丽君. 湖北郧县绿松石宝石学及呈色机制研究[D]. 西安: 长安大学, 2003. Luan L J. Gemological feature and color-forming mechanism of Yunxian turquoise in Hubei Province[D]. Xi'an: Chang'an University, 2003. (in Chinese)
[5] 龚玉爽, 胡斌, 付山岭. 电子探针分析技术(EPMA)在地学中的应用综述[J]. 化学工程与装备, 2011(6): 166-168. https://www.cnki.com.cn/Article/CJFDTOTAL-FJHG201106062.htm Gong Y S, Hu B, Fu S L. Application of electron probe microanalysis (EPMA) in geosciences[J]. Chemical Engineering & Equipment, 2011(6): 166-168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJHG201106062.htm
[6] 钟倩, 亓利剑, 邵慧娟, 等. 巴西绿欧泊的宝石学特征[J]. 宝石和宝石学杂志(中英文), 2013, 15(4): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201304006.htm Zhong Q, Qi L J, Shao H J. Gemological characteristics of green opal from Brazil[J]. Journal of Gems & Gemmology, 2013, 15(4): 29-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201304006.htm
[7] 王含, 周征宇, 钟倩, 等. 电子微探针-X射线衍射-扫描电镜研究老挝石岩石矿物学特征[J]. 岩矿测试, 2016, 35(1): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201601012.htm Wang H, Zhou Z Y, Zhong Q, et al. Study on petrological and mineralogical characteristics of Laos stone by EPMA-XRD-SEM[J]. Rock and Mineral Analysis, 2016, 35(1): 56-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201601012.htm
[8] 郑巧荣. 电子探针分析在宝玉石上的应用[J]. 珠宝科技, 1995(2): 28-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBKJ502.015.htm Zhen Q R. Application of electron probe microanalysis in gems and jades[J]. Jewellery Science and Technology, 1995(2): 28-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBKJ502.015.htm
[9] 国家质量监督检验检疫总局. GB/T15074-2008. 电子探针定量分析方法通则[S]. 北京: 中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T15074-2008 General guide of quantitative analysis by EPMA[S]. Beijing: Standards Press of China, 2008. (in Chinese)
[10] 国家质量监督检验检疫总局. GB/T15617-2002硅酸盐矿物的电子探针定量分析方法[S]. 北京: 中国标准出版社, 2002. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T15617-2002 Quantitative analysis of silicate minerals by electron probe microanalysis[S]. Beijing: Standards Press of China, 2002. (in Chinese)
[11] 国家质量监督检验检疫总局. GB/T15246-2002硫化物矿物的电子探针定量分析方法[S]. 北京: 中国标准出版社, 2002. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T15246-2002 Quantitative analysis of sulfide minerals by electron probe microanalysis[S]. Beijing: Standards Press of China, 2002. (in Chinese)
[12] 郑巧荣. 由电子探针分析值计算Fe3+和Fe2+[J]. 矿物学报, 1983(1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198301008.htm Zhen Q R. Calculation of the Fe3+ and Fe2+ contents in silicate and Ti-Fe oxide minerals from EPMA data. [J]. Acta Mineralogica Sinica, 1983(1): 55-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198301008.htm
[13] 陈全莉. 绿松石的再生利用工艺和机理研究[D]. 武汉: 中国地质大学, 2009. Chen Q L. A Study on recycling techenics and mechanism of turquoise. [D]. Wuhan: China University of Geosciences, 2009. (in Chinese)
[14] 戴慧, 亓利剑, 张青, 等. 安徽省绿松石品质研究及标准制定项目研究报告[R]. 合肥: 安徽省地质实验研究所, 2015. Dai H, Qi L J, Zhang Q, et al. Research report on turquoise quality research and standard formulation project in Anhui Province[R]. Hefei Geological Experiment Institute of Anhui, 2015. (in Chinese)
[15] 姜泽春, 陈大梅, 王辅亚, 等. 湖北、陕西一带绿松石的热性能及其共生矿物[J]. 矿物学报, 1983, 9(3): 198-206. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198303006.htm Jiang Z C, Chen D M, Wang F Y, et al. Thermal properties of turquoise and its intergrowing minerals in a certain district of China[J]. Acta Mineralogica Sinica, 1983, 9(3): 198-206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198303006.htm