Gemmological Characteristic of Brown Sapphire from Guinea, Africa
-
摘要: 以非洲几内亚褐色蓝宝石为研究对象,利用激光拉曼光谱仪、红外光谱仪、激光剥蚀等离子质谱仪及显微紫外-可见光谱仪系统探究其宝石学特征。研究表明,非洲几内亚蓝宝石主要呈褐色、少量为绿色,抛磨成0.4 mm薄片后显红褐色且色带较发育。放大观察结合拉曼光谱测试发现,蓝宝石内部含有大量包裹体且以针状包裹体居多,含有硬水铝石、金红石、黄铁矿、磁铁矿、赤铁矿、锐铁矿等。红外光谱显示明显的1 990、2 123、2 912 cm-1和3 033 cm-1处与硬水铝石相关的O-H振动峰,指示其未经过热处理。激光剥蚀等离子质谱仪测试显示几内亚褐色蓝宝石中微量元素Fe、Ti、Cr含量较高,深色色带与浅色色带间的Fe、Ti等微量元素含量差异较大,与深色色带内部更为富集针状包裹体有关, 根据浅色色带处Fe/Ti浓度比>10,推测为玄武岩型蓝宝石。紫外-可见吸收光谱显示由Fe3+导致的377、387、450 nm处吸收峰,与Cr3+离子有关的556 nm处吸收宽带以及693 nm处吸收锐锋,综合说明几内亚褐色蓝宝石体色主要为Cr3+导致红色,内部含有的大量褐色包裹体导致整体呈褐色。Abstract: The gemmological characteristics of sapphire from Guinea, Africa were investigated by laser Raman spectrometer, Fourier transform infrared spectrometer(FTIR), laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS) and micro-ultraviolet-visible spectrometer(UV-Vis). The analytical results show that sapphires from Guinea, Africa are mainly brown, with a minor contribution of green colour. After polishing into 0.4 mm slices, they show a reddish brown colour with obvious colour bands. Magnified observation showed that there are a lot of inclusions in sapphire and most of them are needle-like inclusions. Combined with Raman spectrum test results, it shows diaspore, rutile, pyrite, magnetite, hematite, anatase and other inclusions. The infrared spectra show obvious O-H vibration peaks related to diaspore at 1 990, 2 123, 2 912 cm-1and 3 033 cm-1, indicating that the sapphires were not heated. The contents of Fe, Ti and Cr in brown sapphires from Guinea are high. Fe, Ti and other trace elements between dark and light colour bands are quite different, which may be related to the enrichment of many inclusions in the dark colour band. According to the Fe/Ti ration(more than 10) in the light colour zone, brown sapphires from Guinea can be inferred as basaltic type. The UV-Vis absorption spectra show 377, 387 nm and 450 nm absorption peaks caused by Fe3+, and 556 nm absorption broad band and 693 nm absorption sharp front related to Cr3+ ions. The red body colour of brown sapphire is mainly caused by Cr3+, and the overall brown colour is caused by a large number of brown inclusions in the interior.
-
Keywords:
- brown sapphire /
- gemmological characteristic /
- chemical composition /
- colour origin /
- Guinea
-
-
表 1 非洲几内亚蓝宝石样品的常规宝石学特征
Table 1 Conventional gemmological characteristics of sapphire samples from Guinea, Africa
样品号 颜色 透明度 折射率 相对密度 紫外荧光 内部特征 LW SW H-1 红褐色 微透明 1.762~1.770 4.03 微红色 惰性 六方角状色带,黑色包裹体 H-2 褐色 不透明 1.761~1.769 3.93 惰性 惰性 色带,固体包裹体 H-3 褐色 不透明 1.763~1.771 3.97 惰性 惰性 六方角状色带、黄色杂质 H-4 褐色 不透明 1.762~1.770 3.97 惰性 惰性 色带,固体包裹体 H-5 褐色 不透明 1.762~1.770 3.95 惰性 惰性 六方角状色带,裂隙,固体包裹体 H-6 褐色 不透明 1.763~1.771 3.94 微红 惰性 裂隙,裂理,固体包裹体 H-7 褐色 微透明 1.763~1.771 3.98 微红 惰性 裂理,固体包裹体 H-8 褐色 不透明 1.762~1.770 3.98 惰性 惰性 色区,裂理,固体包裹体 H-9 褐色 不透明 1.763~1.771 3.96 惰性 惰性 六方角状色带,固体包裹体 H-10 褐色 不透明 1.762~1.770 3.96 惰性 惰性 色区,固体包裹体 Y-A-1 褐色 不透明 1.763~1.771 4.04 惰性 惰性 角状色带,固体包裹体 Y-A-2 褐色 不透明 1.763~1.771 3.98 惰性 惰性 平行色带,固体包裹体 Y-B-1 褐色 不透明 1.762~1.770 3.99 微红 惰性 角状色带,固体包裹体 Y-B-2 褐色 不透明 1.762~1.770 3.96 惰性 惰性 角状色带,固体包裹体 Y-C-2 绿色-褐色 半透明 1.763~1.771 3.99 惰性 惰性 色区, 裂理, 固体包裹体 表 2 非洲几内亚蓝宝石样品的化学成分
Table 2 Chemical compositions of brown sapphire samples from Guinea, Africak
/10-6 样品号 Fe Ti Cr Ga Mg V Nb Hf Ta Pb Th H-1-1(深) 3 515 1 269 761 99 47 70 0.39 0.06 0.50 11.83 36.13 H-1-2(深) 4 130 946 1 130 101 27 82 0.52 0 0.13 - 0.60 H-1-1(浅) 2 580 69 899 95 15 45 0 0.06 0 2.10 6.62 H-1-2(浅) 2 981 103 896 99 - 55 - 0.06 0.04 1.52 11.40 H-3-1(深) 7 003 2 071 1 179 143 101 52 2.42 0.18 3.82 1.54 4.64 H-3-2(深) 5 249 1 519 1 670 110 35 44 3.76 0 2.84 16.57 46.28 H-3-1(浅) 3 674 40 1 620 97 - 31 0 0 0 - - H-3-2(浅) 4 834 94 1 713 93 45 40 1.39 0.23 0 52.21 2.77 H-5-1(深) 7 454 880 1 176 120 30 58 0.23 0 0.35 10.66 24.32 H-5-2(深) 6 214 517 1 323 120 31 54 0.44 - 1.77 4.31 10.79 H-5-1(浅) 5 859 37 1 193 103 25 44 0 0 0 5.19 0.87 H-5-1(浅) 5 363 106 1 229 113 14 45 0.07 0 0 - 1.06 H-8-1(深) 7 055 1 151 1 083 143 52 80 1.88 0.06 2.60 17.32 47.63 H-8-2(深) 6 047 1 026 1 020 141 56 76 0.90 0.12 0.97 12.36 35.04 H-8-1(浅) 5 869 79 1 189 131 45 66 0 0 0.06 - 0 H-8-2(浅) 5 536 109 1 646 127 22 69 0 0 0.02 - 0.04 Y-A-1-1(深) 3 506 2 503 1 115 108 73 58 6.86 0.08 36.67 6.62 18.70 Y-A-1-2(深) 4 364 2 383 1 236 103 81 63 12.36 0 34.02 24.64 70.72 Y-A-1-1(浅) 2 187 60 1 372 93 20 41 0.05 0.09 0.32 - 0.55 Y-A-1-2(深) 1 833 154 1 763 102 25 53 1.51 0 17.85 1.72 3.96 Y-B-1-1(深) 1 767 2 354 1 288 112 40 72 4.17 - 2.06 31.72 93.38 Y-B-1-2(深) 1 406 1 674 1 510 120 37 69 2.03 1.13 2.77 9.08 28.65 Y-B-1-1(浅) 1 097 361 1 281 105 35 60 1.75 0.18 1.35 16.49 50.32 Y-B-1-1(浅) 1 573 500 1 566 108 - 69 0.69 0 1.86 2.38 7.36 Y-C-2-1(褐) 6 811 89 - 67 32 13 0 0.09 0 - 0.09 Y-C-2-1(褐) 6 837 87 - 79 14 14 0.11 0 0 0.99 0.08 Y-C-2-1(绿) 6 449 24 - 75 21 13 0 0 0 0.30 0 Y-C-2-1(绿) 5 832 35 - 65 27 12 0.06 0 0 0.61 0.06 注:“—”为检测限以下 -
[1] 冯珺妍, 陈美华. 非洲几内亚红宝石的宝石学特征及成分特征[J]. 宝石和宝石学杂志(中英文), 2019, 21(3): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201903004.htm Feng J Y, Chen M H. Gemmological characteristic and chemical composition of ruby from Guinea, Africa[J]. Journal of Gems & Gemmology, 2019, 21(3): 26-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201903004.htm
[2] 张蓓莉. 系统宝石学[M]. 北京: 地质出版社, 2006. Zhang P L. Systematic gemology[M]. Beijing: Geological Publishing House, 2006. (in Chinese)
[3] Misra A, Bist H D, Navati M S, et al. Thin film of aluminum oxide through pulsed laser deposition: A micro-Raman study[J]. Materials Science & Engineering B, 2001, 79(1): 49-54.
[4] Xu J A, Huang E, Xu L Y. Raman study at high pressure and the thermodynamic properties of corundum: Application of Kieffer's model[J]. American Mineralogist, 1995, 80(11-12): 1 157-1 165. doi: 10.2138/am-1995-11-1206
[5] 宁珮莹, 张天阳, 马泓, 等. 红外光谱-显微共焦激光拉曼光谱研究天然红宝石和蓝宝石中含水矿物包裹体特征[J]. 岩矿测试, 2019, 38(6): 640-648. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201906007.htm Ning P Y, Zhang T Y, Ma H, et al. Infrared spectroscopy - microstructure laser Raman spectroscopy study natural ruby and sapphire characteristics[J]. Rock and Mineral Analysis, 2019, 38(6): 640-648. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201906007.htm
[6] Beran A, Rossman G R. OH in naturally occurring corundum[J]. European Journal of Minerology, 2006, 18(4): 441-447. doi: 10.1127/0935-1221/2006/0018-0441
[7] 周全德, 王以群. 红宝石傅里叶红外光谱研究[J]. 宝石和宝石学杂志(中英文), 2000, 2(1): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200001005.htm Zhou Q D, Wang Y Q. Ruby Fourier infrared spectra[J]. Journal of Gems & Gemmology, 2000, 2(1): 23-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200001005.htm
[8] Shen A H, Wirth R. Beryllium-bearing nano-inclusions identified in untreated Madagascar sapphire[J]. Gems & Gemology, 2012, 48(2): 150-151.
[9] Zack T, Kronz A, Foley S F, et al. Trace element abundances in rutiles from eclogites and associated garnet mica schists[J]. Chemical Geology, 2002, 184(1): 97-122.
[10] 巫翔, 周蜜. 山东褐色蓝宝石的宝石学特征[J]. 珠宝科技, 2001(4): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBKJ200104022.htm Wu X, Zhou M. Gemological characteristics of brown sapphires from Shandong[J]. Jewelry Technology, 2001(4): 29-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBKJ200104022.htm
[11] Chulapakorn T, Intarasiri S, Bootkul D, et al. Identification of deposit types of natural corundum by PIXE[J]. Nuclear Inst & Methods in Physics Research B, 2014, 331(15): 108-112.
[12] Emmett J L, Scarratt K, McClure S F. et al. Beryllium diffusion of ruby and sapphire[J]. Gems & Gemology, 2003, 39(2): 84-135.
[13] 刘学良. 云南红宝石的宝石学特征及改善工艺研究[D]. 上海: 华东理工大学, 2011. Liu X L. Study on gemological characteristics and improvement technology of ruby from Yunnan[D]. Shaughai: East China University of Science and Technology, 2011. (in Chinese)
[14] Hughes E B, Perkins R. Madagascar sapphire: Low-temperature heat treatment experiments[J]. Gems & Gemology, 2019, 55(2): 184-197.
[15] 谢意红. 蓝宝石的紫外-可见光谱及其致色机理分析[J]. 宝石和宝石学杂志(中英文), 2004, 3(1): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200401003.htm Xie Y H. UV-Vis spectra of sapphire and its chromaticity mechanism. Journal of Gems & Gemmology, 2004, 3(1): 9-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200401003.htm
[16] Emmett J L, Stane-Sunderg J, Guan Y, et al. The role of silicon in the color of gem corundum[J]. Gems & Gemology, 2017, 53(1): 42-47.
[17] 李建军. 散射对山东蓝宝石颜色明度的影响[J]. 宝石和宝石学杂志(中英文), 2004, 6(3): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200403004.htm Li J J. Impact of scattering on colour brilliance of sapphire from Shandong[J]. Journal of Gems & Gemmology, 2017, 19(1): 42-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200403004.htm