Application of 3D Scanning Technique and Colour Measurement on Pearl Sorting
-
摘要: 基于3D扫描技术及色度测量CIE L*a*b*技术, 提出了珍珠的数字化分选方法,从而可以有效克服传统人工筛选的弊端。通过非接触式3D扫描技术获取珍珠的点云数据,并对数据进行拼接处理,得到完整的珍珠三维模型以及珍珠的大小、形状、光洁度对应数据。分光光度计可对珍珠颜色及光泽度进行测量并且进行基于标准色空间CIE L*a*b*的转换,获得可量化指标。利用该技术,企业可根据实际情况并结合国家分级标准GB/T 18781-2008对不同等级珍珠标准品的大小、形状、光洁度、颜色及光泽度进行测量及数据录入,运用算法对样品的测量数据与标准品的数据进行阈值判别,从而实现数字化分选。本文通过实验验证了3D扫描及颜色测量技术在珍珠分选上具有较高的可行性,且未来二者的结合对于珍珠企业实行批量化机械分选,实现自动化生产,缩减生产成本具有巨大潜力。Abstract: An original method for automatic pearl sorting is proposed based on 3D scanning technique and CIE L*a*b* colorimetry, which is able to overcome the shortcomings of manual pearl sorting. The point cloud data of pearl will be extracted by non-contact 3D scanner and processed to splicing module to obtain a three-dimensional (3D) pearl model. The information of size, shape and surface perfection has been involved in the 3D model. The numerical colour as well as luster data of pearl is measured and converted by the colorimeter base on the standard colour space CIE L*a*b*. Pearl companies are able to test and record the standard samples from various detection ranges on the five factors mentioned above based on the judgement index of national pearls grading standard GB/T 18781-2008, and then calculate the threshold between the standard samples and other samples using corresponding algorithm to achieve automatic sorting. The authors verified the high feasibility for automatic pearl sorting using 3D scanning and colour measurement technology based on experiments. Furthermore, the integration of the two technologies has great potential for pearl companies to implement mechanical sorting, realize automatic production and reduce production costs in the future.
-
-
表 1 珍珠样品的外形及颜色特征
Table 1 Appearance and colour characteristics of pearl samples
样品编号 颜色 光洁度 光泽度 最长直径/mm 最短直径/mm 1 浅粉色 小暇 强 11.9 9.8 2 银紫色 瑕疵 中 12.6 10.2 3 浅黄色 微暇 强 12.8 8.5 4 银白色 重瑕 中 12.2 8.7 注:最长直径,最短直径均以卡尺(mm)进行测定 表 2 珍珠样品大小及形状分选结果
Table 2 Sorting outcome of shapes and sizes of pearl samples
样品号 大小/mm 直径差/% 形状等级 1 12.437 × 10.594 ≤20.0 短椭圆B1 2 12.316 × 10.389 ≤ 20.0 高形扁圆C1 3 8.825 ≤ 12.0 近圆A3 4 11.750 × 8.682 > 20.0 长椭圆B2 表 3 基于颜色测量的珍珠样品分选结果
Table 3 Sorting results based on colour measurement of pearl samples
样品编号 体色色系 颜色 光泽 1 红色 浅粉色 强 2 红色 浅紫红色 中 3 黄色 浅黄色 中 4 白色 银白色 弱 -
[1] 国家海关总署进/出口统计数据[EB/OL]. [2018-11-01]. http://www.customs.gov.cn/publish/portal0/tab400/. [2] 金涛. 浅论新经济形态下的珍珠行业现状、成因及对策探讨[J]. 宝石和宝石学杂志, 2018, 20(S1): 160-172. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB2018S1035.htm [3] 刘建群, 李仕勇, 旷辉, 等. 改进的随机Hough变换在检测多圆中的应用[J]. 微计算机信息, 2007, 23(28): 288-290. doi: 10.3969/j.issn.1008-0570.2007.28.119 [4] 桑胜光. 珍珠光泽度及色度测量方法的研究[D]. 天津: 天津大学, 2009. [5] Cao Y L, Zheng H W, Yang J X, et al. Automatic shape grading of pearl using machine vision based measurement[J]. Key Engineering Materials, 2010(437): 389-392.
[6] 夏少杰. 基于单目多视角机器视觉的珍珠分级技术研究[D]. 杭州: 浙江大学, 2015. [7] 赵鹏, 赵匀, 陈广胜. 基于3D扫描技术的木材缺陷定量化分析[J]. 农业工程学报, 2017, 33(7): 171-176. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201707022.htm [8] 李新华, 袁振宇, 张涛, 等. 基于线结构光扫描的足背三维轮廓重构[J]. 计算机工程, 2014, 40(2): 246-249. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201402053.htm [9] GB/T 18781-2008珍珠分级[S]. 北京: 中国标准出版社, 2008. [10] 刘李旭, 戴鑫志, 侯振宇, 等. 基于光栅投影法的3D扫描技术研究[J]. 电光与控制, 2017, 24(6): 101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201706028.htm [11] 刘旭. 基于图像的珍珠表面细微破损检测技术[J]. 计算机仿真, 2012, 29(2): 266-268. doi: 10.3969/j.issn.1006-9348.2012.02.063 [12] Han H, Nam Y. Automatic body landmark identification for various body figures[J]. International Journal of Industrial Ergonomics, 2011, 41(6): 592-606. doi: 10.1016/j.ergon.2011.07.002
[13] Nieves-Chinchilla J, Martínez R, Farjas M, et al. Reverse engineering techniques to optimize facility location of satellite ground stations on building roofs[J]. Automation in Construction, 2018, 90(2): 156-165. http://www.sciencedirect.com/science/article/pii/S0926580518301213
[14] Karasik A, Smilansky U. 3D scanning technology as a standard archaeological tool for pottery analysis: Practice and theory[J]. Journal of Archaeological Science, 2008, 35(5): 1 148-1 168. doi: 10.1016/j.jas.2007.08.008
[15] Geng Z, Bidanda B. Review of reverse engineering systems: Current state of the art[J]. Virtual and Physical Prototyping, 2017, 12(2): 161-172. doi: 10.1080/17452759.2017.1302787?src=recsys&
-
期刊类型引用(1)
1. 徐世龙,杨九昌,陈全莉. 危地马拉“永楚料”翡翠的宝石学特征. 宝石和宝石学杂志(中英文). 2024(02): 31-42 . 百度学术
其他类型引用(0)