Crystallization Time on Quality of Synthetic Jadeite under High Pressure and High Temperature
-
摘要: 翡翠颜色艳丽,结构细腻,受到国人的追崇。近年来,由于天然原料的短缺,人工合成翡翠的研究逐渐受到关注。本文就高压高温下合成翡翠的时间对其品质影响进行探讨。实验采用溶胶-凝胶法制备合成原料,在1 100~1 500 ℃、4.0~6.0 GPa的高压高温条件下合成1~10 h,实现非晶态向硬玉晶体的转化。合成翡翠样品的基本宝石学特征、红外光谱及紫外-可见光谱与天然翡翠的基本一致。随着合成时间的延长,合成翡翠样品的透明度增加,由微透明向半透明转变;X射线粉末衍射分析表明,合成翡翠中的硬玉衍射峰高而窄, 合成时间越长其结晶纯度越高;SEM及偏光显微镜观察结构特征表明,延长晶化时间有利于晶粒生长、结构致密,有利于获得优质合成翡翠。Abstract: Jadeite is well popular by its gorgeous colour and delicate structure. In recent years, due to the shortage of natural jadeite resource, the researches of synthetic jadeite have attracted more and more attention. In this paper, the authors discussed the effect of holding time of synthesis on the quality of jadeite under high pressure and high temperature. The synthetic raw materials were prepared by sol-gel method and they were transformed into jadeite crystal during 1 100-1 500 ℃ under 4.0-6.0 GPa for 1 to 10 hours. The basic gemmological characteristics, infrared spectra and ultraviolet-visible spectra of the synthetic jadeite samples are almost the same as those of natural jadeite. XRD analysis showed that the crystalline purity of jadeite was higher with the increase of synthesis time, and the longer the holding time period was, the sharper the diffraction peak was. SEM and microscopic observation showed that the longer the holding time period was, the better the crystal growth of jadeite, the more compact the structure of jadeite was, and the better the crystal quality of jadeite was.
-
Keywords:
- synthetic jadeite /
- HPHT /
- sol-gel method /
- cystallization time
-
-
表 1 标准硬玉和不同合成时间下合成翡翠样品的晶胞参数
Table 1 Cell parameters of standard jadeite and synthetic jadeite samples for different time periods
样品 a/Å b/Å c/Å α=γ/(°) β/(°) 晶胞体积/Å3 标准硬玉 9.417 8.562 5.219 90 107.58 401.19 合成翡翠(1 h) 9.421 5.564 5.222 90 107.56 401.76 合成翡翠(3 h) 9.419 8.564 5.222 90 107.55 401.64 合成翡翠(6 h) 9.423 8.565 5.224 90 107.56 401.99 合成翡翠(10 h) 9.420 8.561 5.221 90 107.56 401.66 表 2 合成翡翠样品红外光谱中主要基团峰值归属
Table 2 Attribution of infrared spectra of sysnthetic jadeite samples
基团 红外吸收谱带/cm-1 Si-O引起的弯曲振动 530~600 Si-O-Si和O-Si-O引起的对称、不对称伸缩振动 600~1 100 O-Si-O引起的对称伸缩振动 600~950 金属离子与氧(M-O)基团引起的伸缩振动 300~530 -
[1] Bell P M, Roseboom E H. Melting relationships of jadeite and albite to 45 kilobars with comments on melting diagrams of binary systems at high pressures[J]. American Mineralogist, 1969(2): 151-161. http://documents.htracyhall.org/pdf/HTH-Archives/Cabinet%203/B/Bell,%20P.M/combined%20(linked)/Bell,%20P.M.-6313-6319.pdf
[2] Nassau K, Shigley J E. A study of the general electric synthetic jadeite[J]. Gems & Gemology, 1987, 23(1): 27-35.
[3] Vagarali S S, Anthony T R, Casey J, et al. Jadeite and its production[P]. United States, US 6908674 B2, 2005.
[4] Orzol J, Stöckhert B, Trepmann CA, et al. Experimental deformation of synthetic wet jadeite aggregates[J]. Journal of Geophysical Research Solid Earth, 2006, 111(B6): B06205, doi: 10.1029/2005JB003706.
[5] 曹姝旻, 亓利剑, 郭清宏, 等. GE合成翡翠的宝石学特征[J]. 宝石和宝石学杂志, 2006, 8(1): 1-4. doi: 10.3969/j.issn.1008-214X.2006.01.001 [6] 赵廷河, 阎学伟, 崔硕景, 等. 固熔体60%NaAlSi2O6-40%CaMgSi2O6在高温高压下的相图的研究[J]. 高压物理学报, 1992, 6(2): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL199202001.htm [7] 赵廷河, 阎学伟, 陈久华, 等. 宝石翡翠的合成、热行为和热稳定性的研究[J]. 高压物理学报, 1992, 6(4): 291-296. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL199204007.htm [8] 赵廷河, 阎学伟, 朱艺兵, 等. 翡翠宝石的晶体生长[J]. 无机材料学报, 1993, 8(3): 266-272. https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL199303001.htm [9] 赵廷河, 崔硕景, 阎学伟, 等. 翡翠宝石的高温高压合成[J]. 人工晶体报, 1993, 22(2): 123-127. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT199302002.htm [10] 朱成明, 金志升, 蔡恩照, 等. 人工合成宝石级翡翠的研究[J]. 矿物学报, 1997, 17(3): 245-249. doi: 10.3321/j.issn:1000-4734.1997.03.002 [11] 李慧. 合成翡翠的工艺条件及品质研究[D]. 武汉: 中国地质大学, 2010. [12] 杨晔. 合成翡翠粉料制备工艺及合成方法的研究[D]. 武汉: 中国地质大学, 2013. [13] 杨南如, 余桂郁. 溶胶-凝胶法的基本原理与过程[J]. 硅酸盐通报, 1992(2): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT199302010.htm [14] 刘海涛, 杨郦, 张树军, 等. 无机材料合成[M]. 北京: 化学工业出版社, 2003. [15] He K, He D W, Lei L, et al. Synthesis of low-density γ-Al2O3 from high-density α-Al2O3 in the presence of LiBO2 melt under high pressure[J]. Solid State Communications, 2010, 150(43-44): 2 106-2 108. doi: 10.1016/j.ssc.2010.09.018